Fidelity of the Observational/Reanalysis Datasets and Global Climate Models in Representation of Extreme Precipitation in East China

被引:4
作者
He, Sicheng [1 ,2 ,3 ]
Yang, Jing [1 ,2 ,3 ]
Bao, Qing [4 ]
Wang, Lei [4 ,5 ]
Wang, Bin [6 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[2] Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Minist Civil Affairs, Beijing, Peoples R China
[3] Beijing Normal Univ, Fac Geog Sci, Minist Educ, Beijing, Peoples R China
[4] Chinese Acad Sci, Lab Numer Modeling Atmospher Sci & Geophys Fluid, Inst Atmospher Phys, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Univ Hawaii Manoa, Dept Atmospher Sci, Honolulu, HI 96822 USA
基金
中国国家自然科学基金;
关键词
Monsoons; Model evaluation; performance; SUMMER PRECIPITATION; DENSE NETWORK; EVENTS; SENSITIVITY; SIMULATION; RESOLUTION; TRENDS; RAIN; INTERPOLATION; DISASTERS;
D O I
10.1175/JCLI-D-18-0104.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Realistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean-Atmospheric Land System Model-Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations' rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity-frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day(-1), and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%-75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models' simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 71 条
[1]  
Accadia C, 2003, WEATHER FORECAST, V18, P918, DOI 10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO
[2]  
2
[3]   PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies [J].
Ashouri, Hamed ;
Hsu, Kuo-Lin ;
Sorooshian, Soroosh ;
Braithwaite, Dan K. ;
Knapp, Kenneth R. ;
Cecil, L. Dewayne ;
Nelson, Brian R. ;
Prat, Olivier P. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (01) :69-+
[4]  
Cao GY, 2017, J CLIMATE, V30, P7423, DOI [10.1175/jcli-d-16-0913.1, 10.1175/JCLI-D-16-0913.1]
[5]   Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? [J].
Chan, Steven C. ;
Kendon, Elizabeth J. ;
Fowler, Hayley J. ;
Blenkinsop, Stephen ;
Ferro, Christopher A. T. ;
Stephenson, David B. .
CLIMATE DYNAMICS, 2013, 41 (5-6) :1475-1495
[6]   Contribution of human influence to increased daily precipitation extremes over China [J].
Chen, Huopo ;
Sun, Jianqi .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (05) :2436-2444
[7]   Precipitation characteristics in eighteen coupled climate models [J].
Dai, Aiguo .
JOURNAL OF CLIMATE, 2006, 19 (18) :4605-4630
[8]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[9]  
Deng X, 2015, SHUIWEN, V35, P61
[10]  
[邓斅学 Deng Xiaoxue], 2015, [水文, Journal of China Hydrology], V35, P47