A survey of knowledge representation methods and applications in machining process planning

被引:25
作者
Li, Xiuling [1 ,2 ]
Zhang, Shusheng [1 ]
Huang, Rui [3 ]
Huang, Bo [1 ]
Xu, Changhong [4 ]
Zhang, Yajun [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Contemporary Designing & Integrated Mfg T, Minist Educ, Xian 710072, Shaanxi, Peoples R China
[2] Zhengzhou Railway Vocat & Tech Coll, Zhengzhou 450052, Henan, Peoples R China
[3] HoHai Univ, Coll IOT Engn, Changzhou 213022, Peoples R China
[4] Nanjing Res Inst Elect Technol, Nanjing 210000, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Knowledge representation; Knowledge application; Machining process; Process planning; FUZZY PETRI NETS; EXPERT-SYSTEM; AUTOMATIC RECOGNITION; BIG DATA; SELECTION; FEATURES; ONTOLOGY; OPERATIONS; DESIGN; MODEL;
D O I
10.1007/s00170-018-2433-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The machining process is the act of preparing the detailed operating instructions for changing an engineering design into an end product, which involves the removal of material from the part. Today, machining process faces new challenges from the external manufacturing environment, such as globalization and collaboration. Moreover, there has been a virtual explosion in the extent of raw data, and knowledge representation is essential to make sense of the data. Thus, there is an urgent need to ascertain the current status and future trends of knowledge representation in the machining process. This study describes the state of the art of knowledge representation methods and applications in the machining process planning, as well as providing breadth and depth in this area for experts or newcomers. Based on data gathered from the Web of Science, 698 publications related to knowledge representation methods are discussed and divided into nine categories: predicate logic-based, rule-based, semantic network-based, frame-based, script-based, Petri net-based, object-oriented-based, ontology-based, neural network-based. Based on these methods, some specific aspects of the machining process are introduced, including feature recognition, tool selection, setup planning, operation selection and sequencing, and numerical control machining planning generation. Finally, a statistic analysis of these established methods in process planning is discussed, and some trends identified.
引用
收藏
页码:3041 / 3059
页数:19
相关论文
共 151 条
[11]   An approach to support SMEs in manufacturing knowledge organization [J].
Bruno, Giulia ;
Taurino, Teresa ;
Villa, Agostino .
JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (06) :1379-1392
[12]   GA-based adaptive setup planning toward process planning and scheduling integration [J].
Cai, Ningxu ;
Wang, Lihui ;
Feng, Hsi-Yung .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (10) :2745-2766
[13]   An expert system approach for die and mold making operations [J].
Cakir, MC ;
Irfan, O ;
Cavdar, K .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2005, 21 (02) :175-183
[14]   A flexible tool selection decision support system for milling operations [J].
Carpenter, ID ;
Maropoulos, PG .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2000, 107 (1-3) :143-152
[15]   An IT view on perspectives of computer aided process planning research [J].
Cay, F ;
Chassapis, C .
COMPUTERS IN INDUSTRY, 1997, 34 (03) :307-337
[16]   Automated operation sequencing in intelligent process planning: A case-based reasoning approach [J].
Champati, S ;
Lu, WF ;
Lin, AC .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 1996, 12 (01) :21-36
[17]   Indexing and retrieval in machining process planning using case-based reasoning [J].
Chang, HC ;
Dong, L ;
Liu, FX ;
Lu, WF .
ARTIFICIAL INTELLIGENCE IN ENGINEERING, 2000, 14 (01) :1-13
[18]   Machining process planning of prismatic parts using case-based reasoning and past process knowledge [J].
Chang, HC ;
Lu, WF ;
Liu, FX .
APPLIED ARTIFICIAL INTELLIGENCE, 2002, 16 (04) :303-331
[19]   An integrated artificial intelligent computer-aided process planning system [J].
Chang, PT ;
Chang, CH .
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2000, 13 (06) :483-497
[20]   An ontology-based knowledge management system for flow and water quality modeling [J].
Chau, K. W. .
ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (03) :172-181