A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field

被引:15
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Kim, Jeongho [1 ]
Min, Chanho [1 ]
Ruggeri, Tommaso [4 ,5 ]
Zhang, Xiongtao [6 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Hoegiro 87, Seoul 02455, South Korea
[4] Univ Bologna, Dept Math, Bologna, Italy
[5] Univ Bologna, Alma Mater Res Ctr Appl Math AM2, Bologna, Italy
[6] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan, Hubei, Peoples R China
基金
新加坡国家研究基金会;
关键词
The Cucker-Smale model; flocking model; gas mixture; multi-temperature model; thermodynamics; FLOCKING DYNAMICS; ASYMPTOTIC FLOCKING; PARTICLE; EMERGENCE;
D O I
10.1142/S0219530518500033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a hydrodynamic model for the ensemble of thermodynamic Cucker-Smale (TCS) particles in the presence of a temperature field, and study its global-in-time well-posedness in Sobolev space. Our hydrodynamic model can be formally derived from the kinetic TCS model under the mono-kinetic ansatz, and can be viewed as a pressureless gas dynamics with non-local flocking forces. For the global-in-time well-posedness, we assume that communication weight functions are non-negative and non-increasing in their arguments and initial data satisfy non-vacuum conditions and suitable regularity in Sobolev space. In this setting, we use the method of energy estimates and obtain the global existence of classical solutions in any finite time interval. We also present an asymptotic flocking estimate using the Lyapunov functional approach.
引用
收藏
页码:757 / 805
页数:49
相关论文
共 35 条
[1]   ASYMPTOTIC FLOCKING DYNAMICS OF CUCKER-SMALE PARTICLES IMMERSED IN COMPRESSIBLE FLUIDS [J].
Bae, Hyeong-Ohk ;
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Kang, Moon-Jin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4419-4458
[2]   Time-asymptotic interaction of flocking particles and an incompressible viscous fluid [J].
Bae, Hyeong-Ohk ;
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Kang, Moon-Jin .
NONLINEARITY, 2012, 25 (04) :1155-1177
[3]  
Boudin L, 2009, DIFFER INTEGRAL EQU, V22, P1247
[4]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[5]  
Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12
[6]   Emergence of bi-cluster flocking for the Cucker-Smale model [J].
Cho, Junghee ;
Ha, Seung-Yeal ;
Huang, Feimin ;
Jin, Chunyin ;
Ko, Dongnam .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (06) :1191-1218
[7]  
Choi Y.-P., NETW HETEROG MEDIA
[8]  
Choi Y.-P., CRITICAL THRES UNPUB
[9]  
Choi YP, 2017, MODEL SIMUL SCI ENG, P299
[10]   Flocking in noisy environments [J].
Cucker, Felipe ;
Mordecki, Ernesto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03) :278-296