Extraction of multiple motion trajectories in human motion

被引:0
|
作者
Min, JH [1 ]
Park, JH [1 ]
Kasturi, R [1 ]
机构
[1] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
来源
IMAGE ANALYSIS, PROCEEDINGS | 2003年 / 2749卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for extracting multiple motion trajectories in human motions. We extract motion trajectories of body parts (hands and feet) using a new method based on optical flow information. This procedure is not sensitive to complicated backgrounds or color distribution of scenes. No body part model or skin color information is used in our method. We first detect Significant Motion Points (SMPs) and obtain motion trajectories by connecting related SMPs through frames using Modified Greedy Optimal Assignment (MGOA) tracker based on the distance, motion similarity, and optical flow information. We test our approach on actual ballet sequences from videos. The resulting trajectories can be used as potential features for activity recognition.
引用
收藏
页码:1050 / 1057
页数:8
相关论文
共 50 条
  • [41] Recognizing human motion with multiple acceleration sensors
    Mäntyjärvi, J
    Himberg, J
    Seppänen, T
    2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 747 - 752
  • [42] Human Shoulder Motion Extraction Using EMG Signals
    Jang, Giho
    Kim, Junghoon
    Choi, Youngjin
    Yim, Jongguk
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2014, 15 (10) : 2185 - 2192
  • [43] Human shoulder motion extraction using EMG signals
    Giho Jang
    Junghoon Kim
    Youngjin Choi
    Jongguk Yim
    International Journal of Precision Engineering and Manufacturing, 2014, 15 : 2185 - 2192
  • [44] TRAJECTORIES-BASED MOTION NEIGHBORHOOD FEATURE FOR HUMAN ACTION RECOGNITION
    Xiao, Xiang
    Hu, Haifeng
    Wang, Weixuan
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4147 - 4151
  • [45] Vision-based dynamic tracking of motion trajectories of human fingertips
    Ren, D. W.
    Li, J. T.
    ROBOTIC WELDING, INTELLIGENCE AND AUTOMATION, 2007, 362 : 429 - +
  • [46] Similarities and varieties in human motion trajectories of predefined grasping and disposing movements
    Wank, V
    Fischer, A
    Bös, B
    Boesnach, I
    Moldenhauer, J
    Beth, T
    2004 4TH IEEE/RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 311 - 321
  • [47] Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots
    Zhou, Lelai
    Bai, Shaoping
    Li, Yibin
    MODELING IDENTIFICATION AND CONTROL, 2017, 38 (01) : 11 - 19
  • [48] Analyzing Human Skill through Control Trajectories and Motion Capture Data
    Duan, Feng
    Zhang, Ye
    Pongthanya, Nuttapol
    Watanabe, Kei
    Yokoi, Hiroshi
    Arai, Tamio
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, VOLS 1 AND 2, 2008, : 454 - +
  • [49] Use of ropes histograms as joints trajectories representation for human motion recognition
    Nejim, Zeineb
    Mestiri, Makrem
    Amiri, Hamid
    2017 3RD INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2017, : 383 - 388
  • [50] Offline motion simulation framework: Optimizing motion simulator trajectories and parameters
    Katliar, Mikhail
    Olivari, Mario
    Drop, Frank M.
    Nooij, Suzanne
    Diehl, Moritz
    Buelthoff, Heinrich H.
    TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR, 2019, 66 : 29 - 46