Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

被引:101
作者
Jin, Jinshuang [1 ,2 ,3 ]
Tu, Matisse Wei-Yuan [1 ,2 ]
Zhang, Wei-Min [1 ,2 ]
Yan, YiJing [4 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Informat Sci, Tainan 70101, Taiwan
[3] Hangzhou Normal Univ, Dept Phys, Hangzhou 310036, Zhejiang, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
中国国家自然科学基金;
关键词
TIME-DEPENDENT TRANSPORT; BROWNIAN-MOTION; ANOMALIES;
D O I
10.1088/1367-2630/12/8/083013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.
引用
收藏
页数:30
相关论文
共 66 条
[1]  
[Anonymous], 2002, Relativistic boltzmann equation
[2]   Gigahertz quantized charge pumping [J].
Blumenthal, M. D. ;
Kaestner, B. ;
Li, L. ;
Giblin, S. ;
Janssen, T. J. B. M. ;
Pepper, M. ;
Anderson, D. ;
Jones, G. ;
Ritchie, D. A. .
NATURE PHYSICS, 2007, 3 (05) :343-347
[3]  
Breuer H-P., 2002, The Theory of Open Quantum Systems, DOI DOI 10.1093/ACPROF:OSO/9780199213900.001.0001
[4]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[5]  
Calzetta EA, 2008, CAM M MATH, P1, DOI 10.1017/CBO9780511535123
[6]   Theory of charge transport in a quantum dot tunnel junction with multiple energy levels [J].
Chang, Yia-Chung ;
Kuo, David M. -T. .
PHYSICAL REVIEW B, 2008, 77 (24)
[7]   EQUILIBRIUM AND NONEQUILIBRIUM FORMALISMS MADE UNIFIED [J].
CHOU, KC ;
SU, ZB ;
HAO, BL ;
YU, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 118 (1-2) :1-131
[8]  
FADDEEV LD, 1980, GAUGE FIELDS
[9]  
Feynman R. P., 2010, Quantum Mechanics and Path Integrals, DOI 10.1063/1.3048320
[10]   The theory of a general quantum system interacting with a linear dissipative system (Reprinted from Annals of Physics, vol 24, pg 118-173, 1963) [J].
Feynman, RP ;
Vernon, FL .
ANNALS OF PHYSICS, 2000, 281 (1-2) :547-607