Enhanced exfoliation efficiency of graphite into few-layer graphene via reduction of graphite edge

被引:11
作者
Yang, Liangwei [1 ]
Zhao, Fuzhen [1 ,2 ]
Zhao, Yan [1 ]
Sun, Yangyong [1 ]
Yang, Guangwu [2 ]
Tong, Lianming [1 ]
Zhang, Jin [1 ]
机构
[1] Peking Univ, Beijing Natl Lab Mol Sci, Beijing Sci & Engn Ctr Nanocarbons, Ctr Nanochem,Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL EXPANSION; CARBON MATERIALS; OXIDE; INTERCALATION; NANOPLATELETS; FLAKES; FILMS;
D O I
10.1016/j.carbon.2018.07.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene has received abundant attentions in many applications because of its extraordinary properties. Liquid-phase exfoliation is one of the most important methods to obtain graphene from graphite. However, due to strong van der Waals interaction force, it is still extremely challenging to further improve the exfoliation efficiency. Here we report that by carrying out reductions with the oxygenic functional groups on the pristine graphite edges using hydrazine hydrate and hydrogen at 800 degrees C as a pretreatment approach, the exfoliation efficiency can be improved by similar to 37% using a lithium-assisted liquid-phase exfoliation approach. The change of the functional groups is characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The graphene sheets show high degree of structural integrity and few defects. A thin film is prepared from the exfoliated graphene by vacuum assisted filtration and treated by annealing and mechanical compression. The graphene thin film shows a high thermal conductivity of 1707 Wm(-1) K-1, which is superior to that of common metal materials, such as Cu and Al. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:390 / 396
页数:7
相关论文
共 41 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   BINARY GRAPHITE-INTERCALATION COMPOUNDS [J].
CHARLIER, A ;
CHARLIER, MF ;
FRISTOT, D .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1989, 50 (10) :987-996
[3]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[4]   INTERCALATION IN LAYERED COMPOUNDS [J].
DINES, MB .
JOURNAL OF CHEMICAL EDUCATION, 1974, 51 (04) :221-223
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Angle-resolved photoemission study of the graphite intercalation compound KC8: A key to graphene [J].
Grueneis, A. ;
Attaccalite, C. ;
Rubio, A. ;
Vyalikh, D. V. ;
Molodtsov, S. L. ;
Fink, J. ;
Follath, R. ;
Eberhardt, W. ;
Buechner, B. ;
Pichler, T. .
PHYSICAL REVIEW B, 2009, 80 (07)
[8]  
Hao Y., 2013, SCIENCE, V342, P6159
[9]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[10]   Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity [J].
Huang, Sheng-Yun ;
Zhao, Bo ;
Zhang, Kai ;
Yuen, Matthew M. F. ;
Xu, Jian-Bin ;
Fu, Xian-Zhu ;
Sun, Rong ;
Wong, Ching-Ping .
SCIENTIFIC REPORTS, 2015, 5