Planar Yang-Mills theory: Hamiltonian, regulators and mass gap

被引:89
作者
Karabali, D [1 ]
Kim, CJ
Nair, VP
机构
[1] Rockefeller Univ, Dept Phys, New York, NY 10021 USA
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea
[3] CUNY City Coll, Dept Phys, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
Yang-Mills; glueballs; mass gap;
D O I
10.1016/S0550-3213(98)00309-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We carry out the Hamiltonian analysis of non-Abelian gauge theories in (2 + 1) dimensions in a gauge-invariant matrix parametrization of the fields. A detailed discussion of regularization issues and the construction of the renormalized Laplace operator on the configuration space, which is proportional to the kinetic energy, are given. The origin of the mass gap is analyzed and the lowest eigenstates of the kinetic energy are explicitly obtained; these have zero charge and exhibit a mass gap. The nature of the corrections due to the potential energy, the possibility of an improved perturbation theory and a Schrodinger-like equation for the states are also discussed. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:661 / 694
页数:34
相关论文
共 63 条
[1]   REGULARIZED, CONTINUUM YANG-MILLS PROCESS AND FEYNMAN-KAC FUNCTIONAL INTEGRAL [J].
ASOREY, M ;
MITTER, PK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (01) :43-58
[2]   NODES, MONOPOLES AND CONFINEMENT IN 2+1-DIMENSIONAL GAUGE-THEORIES [J].
ASOREY, M ;
FALCETO, F ;
LOPEZ, JL ;
LUZON, G .
PHYSICS LETTERS B, 1995, 349 (1-2) :125-130
[3]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[4]   CONSERVED QUANTITIES FOR THE GEODESIC MOTION ON THE CONFIGURATION SPACE OF NON-ABELIAN YANG-MILLS THEORY [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1981, 103 (01) :45-47
[5]   GAUGE INVARIANT QUANTUM VARIABLES IN QCD [J].
BARS, I ;
GREEN, F .
NUCLEAR PHYSICS B, 1979, 148 (3-4) :445-460
[6]   SPATIAL GEOMETRY OF NON-ABELIAN GAUGE-THEORY IN 2+1-DIMENSIONS [J].
BAUER, M ;
FREEDMAN, DZ .
NUCLEAR PHYSICS B, 1995, 450 (1-2) :209-230
[7]   SPATIAL GEOMETRY OF THE ELECTRIC-FIELD REPRESENTATION OF NON-ABELIAN GAUGE-THEORIES [J].
BAUER, M ;
FREEDMAN, DZ ;
HAAGENSEN, PE .
NUCLEAR PHYSICS B, 1994, 428 (1-2) :147-168
[8]   QUANTUM YANG-MILLS THEORY ON ARBITRARY SURFACES [J].
BLAU, M ;
THOMPSON, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (16) :3781-3806
[9]   QUANTUM EXPANSION OF SOLITON SOLUTIONS [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1975, 12 (06) :1606-1627
[10]   Quark confinement and dual representation in (2+1)-dimensional pure Yang-Mills theory [J].
Das, SR ;
Wadia, SR .
PHYSICAL REVIEW D, 1996, 53 (10) :5856-5865