Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics

被引:76
|
作者
East, Kyle W. [2 ]
Newton, Jocelyn C. [2 ]
Morzan, Uriel N. [3 ]
Narkhede, Yogesh B. [1 ]
Acharya, Atanu [3 ]
Skeens, Erin [2 ]
Jogl, Gerwald [2 ]
Batista, Victor S. [3 ]
Palermo, Giulia [1 ]
Lisi, George P. [2 ]
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
[2] Brown Univ, Providence, RI 02912 USA
[3] Yale Univ, New Haven, CT USA
基金
美国国家科学基金会;
关键词
PROTEIN ALLOSTERY; DNA; RNA; ACTIVATION; RELAXATION; CAS9; SPECTROSCOPY; RECOGNITION; ANISOTROPY; MECHANISM;
D O I
10.1021/jacs.9b10521
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CRISPR-Cas9 is a widely employed genome-editing tool with functionality reliant on the ability of the Cas9 endonuclease to introduce site-specific breaks in double-stranded DNA. In this system, an intriguing allosteric communication has been suggested to control its DNA cleavage activity through flexibility of the catalytic HNH domain. Here, solution NMR experiments and a novel Gaussian-accelerated molecular dynamics (GaMD) simulation method are used to capture the structural and dynamic determinants of allosteric signaling within the HNH domain. We reveal the existence of a millisecond time scale dynamic pathway that spans HNH from the region interfacing the adjacent RuvC nuclease and propagates up to the DNA recognition lobe in full-length CRISPR-Cas9. These findings reveal a potential route of signal transduction within the CRISPR-Cas9 HNH nuclease, advancing our understanding of the allosteric pathway of activation. Further, considering the role of allosteric signaling in the specificity of CRISPR-Cas9, this work poses the mechanistic basis for novel engineering efforts aimed at improving its genome-editing capability.
引用
收藏
页码:1348 / 1358
页数:11
相关论文
共 50 条
  • [31] Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics
    Ricci, Clarisse G.
    Chen, Janice S.
    Miao, Yinglong
    Jinek, Martin
    Doudna, Jennifer A.
    McCammon, J. Andrew
    Palermo, Giulia
    ACS CENTRAL SCIENCE, 2019, 5 (04) : 651 - 662
  • [32] The invisible dance of CRISPR-Cas9
    Palermo, Giulia
    Ricci, Clarisse G.
    McCammon, J. Andrew
    PHYSICS TODAY, 2019, 72 (04) : 30 - 36
  • [33] CRISPR-Cas9 in cancer therapeutics
    Randhawa, Shubhchintan
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 129 - 163
  • [34] CRISPR-Cas9 Structures and Mechanisms
    Jiang, Fuguo
    Doudna, Jennifer A.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 : 505 - 529
  • [35] Allergan dives into CRISPR-Cas9
    不详
    NATURE BIOTECHNOLOGY, 2017, 35 (04) : 296 - 296
  • [36] CRISPR-Cas9: Power And Challenges
    Charpentier, Emmanuelle
    FASEB JOURNAL, 2016, 30
  • [37] CRISPR-Cas9 for muscle dystrophies
    Ballouhey, Oceane
    Bartoli, Marc
    Levy, Nicolas
    M S-MEDECINE SCIENCES, 2020, 36 (04): : 358 - 366
  • [38] CRISPR-Cas9 as a Trojan horse
    Monte, Daniel F. M.
    MOLECULAR THERAPY, 2023, 31 (10) : 2817 - 2818
  • [39] CRISPR-Cas9: Advances and Challenges
    Charpentier, E.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 766 - 766
  • [40] CRISPR-Cas9 nuclear dynamics and target recognition in living cells
    Ma, Hanhui
    Tu, Li-Chun
    Naseri, Ardalan
    Huisman, Maximiliaan
    Zhang, Shaojie
    Grunwald, David
    Pederson, Thoru
    JOURNAL OF CELL BIOLOGY, 2016, 214 (05): : 529 - 537