Numerical Algorithms for Solutions of Korteweg-de Vries Equation

被引:34
作者
Korkmaz, Alper [1 ]
机构
[1] Anadolu Guzel Sanatlar Lisesi, Kutahya, Turkey
关键词
differential quadrature method; interaction; Korteweg-de Vries equation; soliton; wave generation; DIFFERENTIAL QUADRATURE ALGORITHM; PETROV-GALERKIN METHODS; NONLINEAR EVOLUTION; KDV EQUATION; SIMULATIONS;
D O I
10.1002/num.20505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Korteweg-de Vries (KdVE) equation is solved numerically using both Lagrange polynomials based differential quadrature and cosine expansion-based differential quadrature methods. The first test example is travelling single solitary wave solution of KdVE and the second test example is interaction of two solitary waves, whereas the other three examples are wave production from solitary waves. Maximum error norm and root mean square error norm are computed, and numerical comparison with some earlier works is done for the first two examples, the lowest four conserved quantities are computed for all test examples. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 26: 1504-1521, 2010
引用
收藏
页码:1504 / 1521
页数:18
相关论文
共 31 条
[1]   GALERKIN METHODS APPLIED TO SOME MODEL EQUATIONS FOR NONLINEAR DISPERSIVE WAVES [J].
ALEXANDER, ME ;
MORRIS, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (03) :428-451
[2]  
Ames W., 1967, P S NONLINEAR PARTIA, P223
[3]  
[Anonymous], 2000, DIFFERENTIAL QUADRAT
[4]   A SUPERCONVERGENT FINITE-ELEMENT METHOD FOR THE KORTEWEG-DE VRIES EQUATION [J].
ARNOLD, DN ;
WINTHER, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :23-36
[5]   DIFFERENTIAL QUADRATURE - TECHNIQUE FOR RAPID SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
BELLMAN, R ;
CASTI, J ;
KASHEF, BG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 10 (01) :40-&
[6]  
Bellman R., 1976, COMPUT MATH APPL, V1, P371
[7]  
BEREZIN YA, 1967, SOV PHYS JETP-USSR, V24, P1049
[8]   Numerical solutions of KdV equation using radial basis functions [J].
Dag, Idris ;
Dereli, Yilmaz .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (04) :535-546
[9]   Numerical simulation of the stochastic Korteweg-de Vries equation [J].
Debussche, A ;
Printems, J .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (02) :200-226
[10]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404