Digital quantum simulation of lattice gauge theories in three spatial dimensions

被引:92
作者
Bender, Julian [1 ]
Zohar, Erez [1 ]
Farace, Alessandro [1 ]
Cirac, J. Ignacio [1 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
基金
欧盟地平线“2020”;
关键词
lattice gauge theory; quantum simulation; ultracold atoms; PHYSICS; DYNAMICS;
D O I
10.1088/1367-2630/aadb71
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we propose a scheme for the digital formulation of lattice gauge theories with dynamical fermions in 3 + 1 dimensions. All interactions are obtained as a stroboscopic sequence of two-body interactions with an auxiliary system. This enables quantum simulations of lattice gauge theories where the magnetic four-body interactions arising in two and more spatial dimensions are obtained without the use of perturbation theory, thus resulting in stronger interactions compared with analogue approaches. The simulation scheme is applicable to lattice gauge theories with either compact or finite gauge groups. The required bounds on the digitization errors in lattice gauge theories, due to the sequential nature of the stroboscopic time evolution, are provided. Furthermore, an implementation of a lattice gauge theory with a non-abelian gauge group, the dihedral group D-3, is proposed employing the aforementioned simulation scheme using ultracold atoms in optical lattices.
引用
收藏
页数:25
相关论文
共 78 条
[1]   Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices [J].
Aguado, M. ;
Brennen, G. K. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[2]  
[Anonymous], LATTICE GAUGE THEORI
[3]   Review of lattice results concerning low-energy particle physics [J].
Aoki, S. ;
Aoki, Y. ;
Bernard, C. ;
Blum, T. ;
Colangelo, G. ;
Della Morte, M. ;
Duerr, S. ;
El-Khadra, A. X. ;
Fukaya, H. ;
Horsley, R. ;
Juettner, A. ;
Kaneko, T. ;
Laiho, J. ;
Lellouch, L. ;
Leutwyler, H. ;
Lubicz, V. ;
Lunghi, E. ;
Necco, S. ;
Onogi, T. ;
Pena, C. ;
Sachrajda, T. ;
Sharpe, S. R. ;
Simula, S. ;
Sommer, R. ;
Van de Water, R. S. ;
Vladikas, A. ;
Wenger, U. ;
Wittig, H. .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (09)
[4]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[5]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[6]  
Bender J, 2017, THESIS
[7]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[8]  
Binder K, 1992, MONTE CARLO METHOD C, DOI [10.1007/978-3-662-02855-1, DOI 10.1007/978-3-662-02855-1]
[9]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[10]   QCD as a quantum link model [J].
Brower, R ;
Chandrasekharan, S ;
Wiese, UJ .
PHYSICAL REVIEW D, 1999, 60 (09)