Improved frequency response function estimation by Gaussian process regression with prior knowledge

被引:3
作者
Hallemans, N. [1 ]
Pintelon, R. [1 ]
Peumans, D. [1 ]
Lataire, J. [1 ]
机构
[1] Vrije Univ Brussel, Brussels, Belgium
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
关键词
Data-driven modelling; kernel-based; Gaussian process regression; machine learning; lightly damped systems; local rational modelling;
D O I
10.1016/j.ifacol.2021.08.419
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel-based modelling of dynamical systems offers important advantages such as imposing stability, causality and smoothness on the estimate of the model. Here, we improve the existing frequency domain kernel-based approach for estimating the transfer function of a linear time-invariant system from noisy data. This is done by introducing prior knowledge in the kernel. We use a local rational modelling technique to determine the most significant poles, and include these poles as prior knowledge in the kernel. This results in accurate models for the identification of lightly-damped systems. Copyright (C) 2021 The Authors.
引用
收藏
页码:559 / 564
页数:6
相关论文
共 8 条
[1]  
Kwakernaak H., 1991, Modern signals and systems
[2]   Transfer function and transient estimation by Gaussian process regression in the frequency domain [J].
Lataire, John ;
Chen, Tianshi .
AUTOMATICA, 2016, 72 :217-229
[3]  
McKelvey T., 2012, IFAC Proc., V45, P49, DOI [10.3182/20120711-3-be-2027.00299, DOI 10.3182/20120711-3-BE-2027.00299]
[4]   Improved FRF Measurements of Lightly Damped Systems Using Local Rational Models [J].
Peumans, Dries ;
Busschots, Cedric ;
Vandersteen, Gerd ;
Pintelon, Rik .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (07) :1749-1759
[5]   Kernel methods in system identification, machine learning and function estimation: A survey [J].
Pillonetto, Gianluigi ;
Dinuzzo, Francesco ;
Chen, Tianshi ;
De Nicolao, Giuseppe ;
Ljung, Lennart .
AUTOMATICA, 2014, 50 (03) :657-682
[6]   Estimation of nonparametric noise and FRF models for multivariable systems-Part I: Theory [J].
Pintelon, R. ;
Schoukens, J. ;
Vandersteen, G. ;
Barbe, K. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (03) :573-595
[7]   Frequency Response Function Measurements via Local Rational Modeling, Revisited [J].
Pintelon, Rik ;
Peumans, Dries ;
Vandersteen, Gerd ;
Lataire, John .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[8]   Gaussian processes in machine learning [J].
Rasmussen, CE .
ADVANCED LECTURES ON MACHINE LEARNING, 2004, 3176 :63-71