Making Bertha Drive-An Autonomous Journey on a Historic Route

被引:617
作者
Ziegler, Julius [1 ]
Bender, Philipp [1 ]
Schreiber, Markus [1 ]
Lategahn, Henning [2 ]
Strauss, Tobias [2 ]
Stiller, Christoph [2 ]
Dang, Thao [3 ]
Franke, Uwe [3 ]
Appenrodt, Nils [3 ]
Keller, Christoph G. [3 ]
Kaus, Eberhard [3 ]
Herrtwich, Ralf G. [3 ]
Rabe, Clemens [3 ]
Pfeiffer, David [3 ]
Lindner, Frank [3 ]
Stein, Fridtjof [3 ]
Erbs, Friedrich [3 ]
Enzweiler, Markus [3 ]
Knoeppel, Carsten [3 ]
Hipp, Jochen [3 ]
Haueis, Martin [3 ]
Trepte, Maximilian [3 ]
Brenk, Carsten [3 ]
Tamke, Andreas [3 ]
Ghanaat, Mohammad [3 ]
Braun, Markus [3 ]
Joos, Armin [3 ]
Fritz, Hans [3 ]
Mock, Horst [3 ]
Hein, Martin [3 ]
Zeeb, Eberhard [3 ]
机构
[1] FZI Res Ctr Informat Technol, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Dept Measurement & Control Syst, D-76021 Karlsruhe, Germany
[3] Daimler AG, Res & Dev, D-71059 Sindelfingen, Germany
关键词
STEREO; VISION;
D O I
10.1109/MITS.2014.2306552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
125 years after Bertha Benz completed the first overland journey in automotive history, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE followed the same route from Mannheim to Pforzheim, Germany, in fully autonomous manner. The autonomous vehicle was equipped with close-to-production sensor hardware and relied solely on vision and radar sensors in combination with accurate digital maps to obtain a comprehensive understanding of complex traffic situations. The historic Bertha Benz Memorial Route is particularly challenging for autonomous driving. The course taken by the autonomous vehicle had a length of 103 km and covered rural roads, 23 small villages and major cities (e.g. downtown Mannheim and Heidelberg). The route posed a large variety of difficult traffic scenarios including intersections with and without traffic lights, roundabouts, and narrow passages with oncoming traffic. This paper gives an overview of the autonomous vehicle and presents details on vision and radar-based perception, digital road maps and video-based self-localization, as well as motion planning in complex urban scenarios.
引用
收藏
页码:8 / 20
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 2005, PROC CVPR IEEE
[2]  
Badino H., 2009, P DAGM
[3]   An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J].
Boykov, Y ;
Kolmogorov, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (09) :1124-1137
[4]  
Dickmanns E. D., 1994, Proceedings of the Intelligent Vehicles '94 Symposium (Cat. No.94TH8011), P68, DOI 10.1109/IVS.1994.639472
[5]   AN INTEGRATED SPATIOTEMPORAL APPROACH TO AUTOMATIC VISUAL GUIDANCE OF AUTONOMOUS VEHICLES [J].
DICKMANNS, ED ;
MYSLIWETZ, B ;
CHRISTIANS, T .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1990, 20 (06) :1273-1284
[6]  
Enzweiler M, 2013, IEEE INT VEH SYM, P902, DOI 10.1109/IVS.2013.6629581
[7]  
Enzweiler M, 2012, 2012 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), P1066, DOI 10.1109/IVS.2012.6232137
[8]   A Multilevel Mixture-of-Experts Framework for Pedestrian Classification [J].
Enzweiler, Markus ;
Gavrila, Dariu M. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (10) :2967-2979
[9]   Stixmentation - Probabilistic Stixel based Traffic Scene Labeling [J].
Erbs, Friedrich ;
Schwarz, Beate ;
Franke, Uwe .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[10]  
Franke U, 2005, LECT NOTES COMPUT SC, V3663, P216