Naive Bayesian classifier for microarray data

被引:0
作者
Kelemen, A [1 ]
Zhou, H [1 ]
Lawhead, P [1 ]
Liang, YL [1 ]
机构
[1] Univ Mississippi, Dept Comp & Informat Sci, University, MS 38677 USA
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4 | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Comparing with more sophisticated classifiers, the naive Bayesian classifier greatly simplifies learning by assuming that the attribute values are conditionally independent given the class. Although independence is a strong assumption, in practice naive Bayesian classifier often competes with other complex classifiers and naive Bayesian algorithm works well for classifying text documents. In this paper, we present our invented technique, called "attribute grouping" for data preprocessing. The naive Bayesian algorithm is implemented for classifying multiple gene expression patterns from microarry experiments. Results show that attribute grouping is very effective and that the naive Bayesian classifier becomes a suitable classification method. for microarry data when the attribute grouping is used.
引用
收藏
页码:1769 / 1773
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 2001, Bioinformatics: A practical guide to the analysis of genes and proteins
[2]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[3]  
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00001-0]
[4]   Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments [J].
Kerr, MK ;
Churchill, GA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :8961-8965
[5]   Bayesian neural network for microarray data [J].
Liang, YL ;
George, EO ;
Kelemen, A .
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, :193-197
[6]  
Mitchell T., 1997, Machine Learning, V7, P2
[7]  
RAMONI M, 1999, P 7 INT WORKSH ART I
[8]  
RAMONI M, 1999, KMITR79
[9]  
ROBERT ML, 1988, J AM SOC INFORM SCI, V39, P8
[10]  
YANG Y, 2000, 589 UC BERK DEP STAT