Machine-Learning Applications in Oral Cancer: A Systematic Review

被引:24
作者
Lopez-Cortes, Xaviera A. [1 ]
Matamala, Felipe [1 ]
Venegas, Bernardo [2 ]
Rivera, Cesar [3 ]
机构
[1] Univ Catolica Maule, Dept Comp Sci & Ind, Talca 3480112, Chile
[2] Univ Talca, Fac Hlth Sci, Dept Stomatol, Talca 3460000, Chile
[3] Univ Talca, Fac Hlth Sci, Dept Basic Biomed Sci, Talca 3460000, Chile
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 11期
关键词
oral cancer; OSCC; machine learning; applications; SQUAMOUS-CELL CARCINOMA; ARTIFICIAL NEURAL-NETWORK; LYMPH-NODE METASTASIS; AUTOMATED CLASSIFICATION; RISK-FACTORS; TISSUE; MODEL; PREDICTION; DIAGNOSIS; SPECTRA;
D O I
10.3390/app12115715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Over the years, several machine-learning applications have been suggested to assist in various clinical scenarios relevant to oral cancer. We offer a systematic review to identify, assess, and summarize the evidence for reported uses in the areas of oral cancer detection and prevention, prognosis, pre-cancer, treatment, and quality of life. The main algorithms applied in the context of oral cancer applications corresponded to SVM, ANN, and LR, comprising 87.71% of the total published articles in the field. Genomic, histopathological, image, medical/clinical, spectral, and speech data were used most often to predict the four areas of application found in this review. In conclusion, our study has shown that machine-learning applications are useful for prognosis, diagnosis, and prevention of potentially malignant oral lesions (pre-cancer) and therapy. Nevertheless, we strongly recommended the application of these methods in daily clinical practice.
引用
收藏
页数:18
相关论文
共 78 条
[1]   Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence [J].
Ariji, Yoshiko ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Yanashita, Yudai ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 127 (05) :458-463
[2]   Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning [J].
Aubreville, Marc ;
Knipfer, Christian ;
Oetter, Nicolai ;
Jaremenko, Christian ;
Rodner, Erik ;
Denzler, Joachim ;
Bohr, Christopher ;
Neumann, Helmut ;
Stelzle, Florian ;
Maier, Andreas .
SCIENTIFIC REPORTS, 2017, 7
[3]   Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer [J].
Banerjee, Satarupa ;
Pal, Mousumi ;
Chakrabarty, Jitamanyu ;
Petibois, Cyril ;
Paul, Ranjan Rashmi ;
Giri, Amita ;
Chatterjee, Jyotirmoy .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (26) :7935-7943
[4]   Performance of a computer simulated neural network trained to categorise normal, premalignant and malignant oral smears [J].
Brickley, MR ;
Cowpe, JG ;
Shepherd, JP .
JOURNAL OF ORAL PATHOLOGY & MEDICINE, 1996, 25 (08) :424-428
[5]   Age Effects and Temporal Trends in HPV-Related and HPV-Unrelated Oral Cancer in the United States: A Multistage Carcinogenesis Modeling Analysis [J].
Brouwer, Andrew F. ;
Eisenberg, Marisa C. ;
Meza, Rafael .
PLOS ONE, 2016, 11 (03)
[6]   Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma [J].
Bur, Andres M. ;
Holcomb, Andrew ;
Goodwin, Sara ;
Woodroof, Janet ;
Karadaghy, Omar ;
Shnayder, Yelizaveta ;
Kakarala, Kiran ;
Brant, Jason ;
Shew, Matthew .
ORAL ONCOLOGY, 2019, 92 :20-25
[7]   Use of fuzzy neural networks in modeling relationships of HPV infection with apoptotic and proliferation markers in potentially malignant oral lesions [J].
Campisi, G ;
Di Fede, O ;
Giovannelli, L ;
Capra, G ;
Greco, I ;
Calvino, F ;
Florena, AM ;
Lo Muzio, L .
ORAL ONCOLOGY, 2005, 41 (10) :994-1004
[8]   PERI-TUMORAL INFLAMMATORY CELL INFILTRATION IN OSCC: A RELIABLE MARKER OF LOCAL RECURRENCE AND PROGNOSIS? AN INVESTIGATION USING ARTIFICIAL NEURAL NETWORKS [J].
Campisi, G. ;
Calvino, F. ;
Carinci, F. ;
Matranga, D. ;
Carella, M. ;
Mazzotta, M. ;
Rubini, C. ;
Panzarella, V. ;
Santarelli, A. ;
Fedele, S. ;
Lo Muzio, L. .
INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2011, 24 (02) :113-120
[9]   A 3-mRNA-based prognostic signature of survival in oral squamous cell carcinoma [J].
Cao, Ruoyan ;
Wu, Qiqi ;
Li, Qiulan ;
Yao, Mianfeng ;
Zhou, Hongbo .
PEERJ, 2019, 7
[10]   Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer [J].
Carnielli, Carolina Moretto ;
Soares Macedo, Carolina Carneiro ;
De Rossi, Tatiane ;
Granato, Daniela Campos ;
Rivera, Cesar ;
Domingues, Romenia Ramos ;
Pauletti, Bianca Alves ;
Yokoo, Sami ;
Heberle, Henry ;
Busso-Lopes, Ariane Fidelis ;
Cervigne, Nilva Karla ;
Sawazaki-Calone, Iris ;
Meirelles, Gabriela Vaz ;
Marchi, Fabio Albuquerque ;
Telles, Guilherme Pimentel ;
Minghim, Rosane ;
Prado Ribeiro, Ana Carolina ;
Brandao, Thais Bianca ;
Castro, Gilberto de, Jr. ;
Alejandro Gonzalez-Arriagada, Wilfredo ;
Gomes, Alexandre ;
Penteado, Fabio ;
Santos-Silva, Alan Roger ;
Lopes, Marcio Ajudarte ;
Rodrigues, Priscila Campioni ;
Sundquist, Elias ;
Salo, Tuula ;
da Silva, Sabrina Daniela ;
Alaoui-Jamali, Moulay A. ;
Graner, Edgard ;
Fox, Jay W. ;
Della Coletta, Ricardo ;
Paes Leme, Adriana Franco .
NATURE COMMUNICATIONS, 2018, 9