Modular elliptic curves over real abelian fields and the generalized Fermat equation x2l + y2m = zp

被引:10
作者
Anni, Samuele [1 ]
Siksek, Samir [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
elliptic curves; modularity; Galois representation; level lowering; irreducibility; generalized Fermat; Fermat-Catalan; Hilbert modular forms; GALOIS REPRESENTATIONS; TORSION POINTS;
D O I
10.2140/ant.2016.10.1147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a real abelian field of odd class number in which 5 is unramified. Let S-5 be the set of places of K above 5. Suppose for every nonempty proper subset S subset of S-5 there is a totally positive unit u is an element of O-K such that Pi(q) (is an element of S) Norm Fq/F5 (u mod q) not equal (1) over bar. We prove that every semistable elliptic curve over K is modular, using a combination of several powerful modularity theorems and class field theory. We deduce that if K is a real abelian field of conductor n < 100, with 5 inverted iota n and n not equal 29, 87, 89, then every semistable elliptic curve E over K is modular. Let l, m; p be prime, with l, m >= 5 and p >= 3. To a putative nontrivial primitive solution of the generalized Fermat equation x(2l) + y(2m) = z(p) we associate a Frey elliptic curve defined over Q(zeta(p))(+), and study its mod l representation with the help of level lowering and our modularity result. We deduce the nonexistence of nontrivial primitive solutions if p <= 11, or if p = 13 and l, m not equal 7.
引用
收藏
页码:1147 / 1172
页数:26
相关论文
共 45 条
[1]  
[Anonymous], 1980, BASE CHANGE GL 2
[2]  
Barnet-Lamb T, 2013, MATH RES LETT, V20, P81
[3]   CONGRUENCES BETWEEN HILBERT MODULAR FORMS: CONSTRUCTING ORDINARY LIFTS [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (08) :1521-1580
[4]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[5]  
Bennett MA, 2006, J THEOR NOMBR BORDX, V2, P315, DOI [10.5802/jtnb.546, DOI 10.5802/JTNB.546]
[6]   Generalized Fermat equations: A miscellany [J].
Bennett, Michael A. ;
Chen, Imin ;
Dahmen, Sander R. ;
Yazdani, Soroosh .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) :1-28
[7]   Shifted powers in binary recurrence sequences [J].
Bennett, Michael A. ;
Dahmen, Sander R. ;
Mignotte, Maurice ;
Siksek, Samir .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 158 (02) :305-329
[8]   Multi-Frey Q-curves and the Diophantine equation a2+b6 = cn [J].
Bennett, Michael A. ;
Chen, Imin .
ALGEBRA & NUMBER THEORY, 2012, 6 (04) :707-730
[9]   THE DIOPHANTINE EQUATION A4+2δB2 = Cn [J].
Bennett, Michael A. ;
Ellenberg, Jordan S. ;
Ng, Nathan C. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (02) :311-338
[10]  
Beukers F., 2012, PANOR SYNTHESES, V36, P119