A New Hybrid XGBSVM Model: Application for Hypertensive Heart Disease

被引:27
作者
Chang, Wenbing [1 ]
Liu, Yinglai [1 ]
Wu, Xueyi [2 ,3 ,4 ]
Xiao, Yiyong [1 ]
Zhou, Shenghan [1 ]
Cao, Wen [5 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[2] Fuwai Hosp, Hypertens Ctr, Beijing 100037, Peoples R China
[3] Chinese Acad Med Sci, Natl Ctr Cardiovasc Dis, Beijing 100050, Peoples R China
[4] Peking Union Med Coll, Beijing 100730, Peoples R China
[5] Peninsula Reg Med Ctr, Dept Operat Performance Improvement, Salisbury, MD 21801 USA
基金
中国国家自然科学基金;
关键词
XGBSVM; hypertensive heart disease; SVM; XGBoost; biomedicine; RANDOM FOREST; PREDICTION; SVM;
D O I
10.1109/ACCESS.2019.2957367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The changes in people's life rhythm and improvement in material levels that happened in recent years increased the number of people suffering from high blood pressure in the world. Therefore, as a cardiac complication of hypertension, the prevalence of hypertensive heart disease has increased annually, it has seriously endangered the safety of human life, and the effective prediction of hypertensive heart disease has become a worldwide problem. This paper uses the newly proposed XGBSVM hybrid model to predict whether hypertensive patients will develop hypertensive heart disease within three years. The final experiment proves that through this model, hypertensive patients can learn their risk of hypertensive heart disease within 3 years and then undergo targeted preventive treatment, thereby reducing the psychological, physiological and economic burden. This paper confirms that the machine learning can be successfully applied in the biomedical field, with strong real-world significance and research value.
引用
收藏
页码:175248 / 175258
页数:11
相关论文
共 40 条
  • [1] [Anonymous], INT J ADV RES IDEAS
  • [2] Chen T., 2016, 22 ACM SIGKDD INT C
  • [3] Radar emitter classification for large data set based on weighted-xgboost
    Chen, Wenbin
    Fu, Kun
    Zuo, Jiawei
    Zheng, Xinwei
    Huang, Tinglei
    Ren, Wenjuan
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (08) : 1203 - 1207
  • [4] Chen Y, 2018, Information Technology, V9, P84
  • [5] TeleOphta: Machine learning and image processing methods for teleophthalmology
    Decenciere, E.
    Cazuguel, G.
    Zhang, X.
    Thibault, G.
    Klein, J. -C.
    Meyer, F.
    Marcotegui, B.
    Quellec, G.
    Lamard, M.
    Danno, R.
    Elie, D.
    Massin, P.
    Viktor, Z.
    Erginay, A.
    Lay, B.
    Chabouis, A.
    [J]. IRBM, 2013, 34 (02) : 196 - 203
  • [6] Lipid-Related Markers and Cardiovascular Disease Prediction
    Di Angelantonio, Emanuele
    Gao, Pei
    Pennells, Lisa
    Kaptoge, Stephen
    Caslake, Muriel
    Thompson, Alexander
    Butterworth, Adam S.
    Sarwar, Nadeem
    Wormser, David
    Saleheen, Danish
    Ballantyne, Christie M.
    Psaty, Bruce M.
    Sundstrom, Johan
    Ridker, Paul M.
    Nagel, Dorothea
    Gillum, Richard F.
    Ford, Ian
    Ducimetiere, Pierre
    Kiechl, Stefan
    Dullaart, Robin P. F.
    Assmann, Gerd
    D'Agostino, Ralph B.
    Dagenais, Gilles R.
    Cooper, Jackie A.
    Kromhout, Daan
    Onat, Altan
    Tipping, Robert W.
    Gomez-de-la-Camara, Agustin
    Rosengren, Annika
    Sutherland, Susan E.
    Gallacher, John
    Fowkes, F. Gerry R.
    Casiglia, Edoardo
    Hofman, Albert
    Salomaa, Veikko
    Barrett-Connor, Elizabeth
    Clarke, Robert
    Brunner, Eric
    Jukema, J. Wouter
    Simons, Leon A.
    Sandhu, Manjinder
    Wareham, Nicholas J.
    Khaw, Kay-Tee
    Kauhanen, Jussi
    Salonen, Jukka T.
    Howard, William J.
    Nordestgaard, Borge G.
    Wood, Angela M.
    Thompson, Simon G.
    Boekholdt, S. Matthijs
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (23): : 2499 - 2506
  • [7] Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM
    Dolatabadi, Azam Davari
    Khadem, Siamak Esmael Zadeh
    Asl, Babak Mohammadzadeh
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 138 : 117 - 126
  • [8] Application of Entropy-Based Attribute Reduction and an Artificial Neural Network in Medicine: A Case Study of Estimating Medical Care Costs Associated with Myocardial Infarction
    Du, Qingyun
    Nie, Ke
    Wang, Zhensheng
    [J]. ENTROPY, 2014, 16 (09) : 4788 - 4800
  • [9] GAO H, 2014, CHIN J EVIDENCE BASE, V14, P20165, DOI DOI 10.3390/S141120165
  • [10] Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique
    Greenspan, Hayit
    van Ginneken, Bram
    Summers, Ronald M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1153 - 1159