Compressive Sensing for Autoregressive Hidden Markov Model Signal

被引:0
作者
Wu, Ji [1 ]
Liang, Qilian [1 ]
Zhou, Zheng [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
来源
WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS | 2010年 / 6221卷
基金
美国国家科学基金会;
关键词
compressive sensing; coefficient estimation; hidden markov model; RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cornpressive sensing(CS) is an emerging filed based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-Nyquist signal acquisition. One challenging problem in compressive sensing is that it is difficult to represent signal in sparse basis, which makes this algorithm sometimes impractical. In this paper, we can setup a new standard compressive sensing problem for autoregressive hidden markov signal by utilizing the original observation vector and the autoregressive coefficients.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [31] Sparsity and compressive sensing for SAR signal
    Wang, Wei
    Zhang, Baoju
    Mu, Jiasong
    Wu, Xiaorong
    2012 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2012, : 1416 - 1419
  • [32] A System for Compressive Sensing Signal Reconstruction
    Orovic, Irena
    Draganic, Andjela
    Lekic, Nedjeljko
    Stankovic, Srdjan
    17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 170 - 175
  • [33] Compressive Sensing for Array Signal Processing
    Satheesh, Anila B.
    Deepa, B.
    Bhai, Subhadra
    Devi, Anjana S.
    2012 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2012, : 555 - 560
  • [34] Compressive Sensing Signal Reconstruction by Weighted Median Regression Estimates
    Paredes, Jose L.
    Arce, Gonzalo R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (06) : 2585 - 2601
  • [35] RANSAC-Based Signal Denoising Using Compressive Sensing
    Stankovic, Ljubisa
    Brajovic, Milos
    Stankovic, Isidora
    Lerga, Jonatan
    Dakovic, Milos
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (08) : 3907 - 3928
  • [36] Forecasting violent events in the Middle East and North Africa using the Hidden Markov Model and regularized autoregressive models
    Hossain, K. S. M. Tozammel
    Gao, Shuyang
    Kennedy, Brendan
    Galstyan, Aram
    Natarajan, Prem
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2020, 17 (03): : 269 - 283
  • [37] High-speed Signal Reconstruction for Compressive Sensing Applications
    Huang, Guoxian
    Wang, Lei
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2015, 81 (03): : 333 - 344
  • [38] Prediction of Lipoprotein Signal Peptides in Gram-Positive Bacteria with a Hidden Markov Model
    Bagos, Pantells G.
    Tslrigos, Konstantinos D.
    Liakopoulos, Theodore D.
    Hamodrakas, Stavros J.
    JOURNAL OF PROTEOME RESEARCH, 2008, 7 (12) : 5082 - 5093
  • [39] Underwater Acoustic Signal Detection Using Calibrated Hidden Markov Model with Multiple Measurements
    You, Heewon
    Byun, Sung-Hoon
    Choo, Youngmin
    SENSORS, 2022, 22 (14)
  • [40] Uncovering Hidden Spatial Patterns by Hidden Markov Model
    Huang, Ruihong
    Kennedy, Christina
    GEOGRAPHIC INFORMATION SCIENCE, 2008, 5266 : 70 - 89