Compressive Sensing for Autoregressive Hidden Markov Model Signal

被引:0
|
作者
Wu, Ji [1 ]
Liang, Qilian [1 ]
Zhou, Zheng [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
美国国家科学基金会;
关键词
compressive sensing; coefficient estimation; hidden markov model; RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cornpressive sensing(CS) is an emerging filed based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-Nyquist signal acquisition. One challenging problem in compressive sensing is that it is difficult to represent signal in sparse basis, which makes this algorithm sometimes impractical. In this paper, we can setup a new standard compressive sensing problem for autoregressive hidden markov signal by utilizing the original observation vector and the autoregressive coefficients.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [31] Autoregressive Hidden Markov Model with Missing Data for Modelling Functional MR Imaging Data
    Dang, Shilpa
    Chaudhury, Santanu
    Lall, Brejesh
    Roy, Prasun Kumar
    TENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2016), 2016,
  • [32] Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
    Krishnamurthy, V
    Yin, GG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (02) : 458 - 476
  • [33] NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction
    Alex N Nguyen Ba
    Anastassia Pogoutse
    Nicholas Provart
    Alan M Moses
    BMC Bioinformatics, 10
  • [34] NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction
    Ba, Alex N. Nguyen
    Pogoutse, Anastassia
    Provart, Nicholas
    Moses, Alan M.
    BMC BIOINFORMATICS, 2009, 10
  • [35] Hidden Markov Model Based Signal Characterization for Weak Light Communication
    Liu, Xiaona
    Gong, Chen
    Liu, Beiyuan
    Li, Shangbin
    Xu, Zhengyuan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (09) : 1730 - 1738
  • [36] Phonocardiographic Signal Analysis Method Using a Modified Hidden Markov Model
    Ping Wang
    Chu Sing Lim
    Sunita Chauhan
    Jong Yong A. Foo
    Venkataraman Anantharaman
    Annals of Biomedical Engineering, 2007, 35 : 367 - 374
  • [37] Phonocardiographic signal analysis method using a modified hidden Markov model
    Wang, Ping
    Lim, Chu Sing
    Chauhan, Sunita
    Foo, Jong Yong A.
    Anantharaman, Venkataraman
    ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (03) : 367 - 374
  • [38] Distributed compressed video sensing based on hidden markov tree model
    Hu, Chunhai
    Bai, Jing
    ICIC Express Letters, Part B: Applications, 2015, 6 (07): : 1951 - 1958
  • [39] Bayesian Sensing Hidden Markov Models
    Saon, George
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01): : 43 - 54
  • [40] Generalized beta Bayesian compressive sensing model for signal reconstruction
    Sadeghigol, Zahra
    Kahaei, Mohammad Hossein
    Haddadi, Farzan
    DIGITAL SIGNAL PROCESSING, 2017, 60 : 163 - 171