Compressive Sensing for Autoregressive Hidden Markov Model Signal

被引:0
|
作者
Wu, Ji [1 ]
Liang, Qilian [1 ]
Zhou, Zheng [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
美国国家科学基金会;
关键词
compressive sensing; coefficient estimation; hidden markov model; RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cornpressive sensing(CS) is an emerging filed based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-Nyquist signal acquisition. One challenging problem in compressive sensing is that it is difficult to represent signal in sparse basis, which makes this algorithm sometimes impractical. In this paper, we can setup a new standard compressive sensing problem for autoregressive hidden markov signal by utilizing the original observation vector and the autoregressive coefficients.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [21] Esophageal pressure signal recognition using the hidden Markov model
    Dehghani, Marjan
    Eghbal, Manouchehr
    Motlagh, Mohammand Reza Jahed
    Annals of Biomedical Engineering, 2000, 28 (SUPPL. 1)
  • [22] Signal denoising using wavelets and block hidden markov model
    Liao, ZW
    Tang, YY
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (05) : 681 - 700
  • [23] A profile hidden Markov model for signal peptides generated by HMMER
    Zhang, ZM
    Wood, WI
    BIOINFORMATICS, 2003, 19 (02) : 307 - 308
  • [24] Application of the hidden markov model to the classification of passive acoustic signal
    Ding, Qinghai
    Zhuang, Zhihong
    Lu, Jianwei
    Zhang, Qingtai
    Xi'an Shiyou Xueyuan Xuebao/Journal of Xi'an Petroleum Institute (Natural Science Edition), 1998, 13 (06): : 481 - 485
  • [25] Signal denoising using wavelet and block hidden Markov model
    Liao, ZW
    Lam, ECM
    Tang, YY
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2468 - 2471
  • [26] Model-Based Compressive Sensing for Signal Ensembles
    Duarte, Marco F.
    Cevher, Volkan
    Baraniuk, Richard G.
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 244 - +
  • [27] Hidden Markov Mixture Autoregressive Models: Stability and Moments
    Alizadeh, S. H.
    Rezakhah, S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (06) : 1087 - 1104
  • [28] Autoregressive Asymmetric Linear Gaussian Hidden Markov Models
    Puerto-Santana, Carlos
    Larranaga, Pedro
    Bielza, Concha
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4642 - 4658
  • [29] Revisiting autoregressive hidden Markov modeling of speech signals
    Ephraim, Y
    Roberts, WJJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (02) : 166 - 169
  • [30] Fault diagnosis methods for centrifugal pump based on autoregressive and continuous hidden Markov model
    Zhou, Yun-Long
    Liu, Chang-Xin
    Zhao, Peng
    Sun, Bin
    Hong, Wen-Peng
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008, 28 (20): : 88 - 93