Tungsten (W) has industrial and economic importance, and is in the European Union list of metals with a high supply risk. It is used by living organisms, which transport it into the cell, in the form of tungstate ion (WO42-), using three different ABC-type transporters from the specific W-uptake system coded by tupABC gene cluster. In this study, strains from a collection recovered from deep-sea hydrothermal sediments were selected according to their ability to tolerate metals and to possess the tup genetic determinants. Three multimetal-tolerant strains, Sulfitobacter dubius NA4, As(V)4 and Sb5, were chosen. The strains were able to grow in the presence of high tungsten concentrations and their growth was unaffected by 1 mM tungsten. Moreover, strain Sb5 was able to accumulate up to 52 mu g W mg(-1) protein. Their tup genes were shown to be organized as tupBCA, which is not the most usual gene arrangement. All three strains had the classical TupA conserved motif 1TfS, comprising a first Thr replaced by a Val, which seems to be a common feature of the genus Sulfitobacter. This study was an important first step in the exploration of new biological strategies for recovering tungsten from natural or anthropogenic W-impacted environments. (C) 2017 Elsevier GmbH. All rights reserved.