A novel synergistic composite with multi-functional effects for high-performance Li-S batteries

被引:575
作者
Li, Yi-Juan [1 ]
Fan, Jing-Min [1 ]
Zheng, Ming-Sen [1 ]
Dong, Quan-Feng [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem,State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
关键词
LITHIUM-SULFUR BATTERIES; METAL-ORGANIC FRAMEWORK; ELECTROCHEMICAL ENERGY-STORAGE; CATHODE MATERIAL; POROUS CARBON; POLYSULFIDES; SURFACE; FUNCTIONALITY; CHEMISTRY;
D O I
10.1039/c6ee00104a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rechargeable lithium-sulfur battery is regarded as a promising option for electrochemical energy storage systems owing to its high energy density, low cost and environmental friendliness. Further development of the Li-S battery, however, is still impeded by capacity decay and kinetic sluggishness caused by the polysulfide shuttle and electrode/electrolyte interface issues. Herein, a new type of metal-organic-framework-derived sulfur host containing cobalt and N-doped graphitic carbon (Co-N-GC) was synthesized and reported, in which the catalyzing for S redox, entrapping of polysulfides and an ideal electronic matrix were successfully achieved synchronously, leading to a significant improvement in the Li-S performance. The large surface area and uniform dispersion of cobalt nanoparticles within the N-doped graphitic carbon matrix contributed to a distinct enhancement in the specific capacity, rate performance and cycle stability for Li-S batteries. As a result of this multi-functional arrangement, cathodes with a high sulfur loading of 70 wt% could operate at 1C for over 500 cycles with nearly 100% coulombic efficiency and exhibited an outstanding high-rate response of up to 5C, suggesting that the S@Co-N-GC electrode was markedly improved by the proposed strategy, demonstrating its great potential for use in low-cost and high-energy Li-S batteries.
引用
收藏
页码:1998 / 2004
页数:7
相关论文
共 37 条
[1]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[2]   From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage [J].
Amali, Arlin Jose ;
Sun, Jian-Ke ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (13) :1519-1522
[3]   Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration [J].
Babu, Ganguli ;
Ababtain, Khalid ;
Ng, K. Y. Simon ;
Arava, Leela Mohana Reddy .
SCIENTIFIC REPORTS, 2015, 5
[4]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li-S Battery [J].
Chen, Jia-Jia ;
Yuan, Ru-Ming ;
Feng, Jia-Min ;
Zhang, Qian ;
Huang, Jing-Xin ;
Fu, Gang ;
Zheng, Ming-Sen ;
Ren, Bin ;
Dong, Quan-Feng .
CHEMISTRY OF MATERIALS, 2015, 27 (06) :2048-2055
[7]   Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J].
Eddaoudi, M ;
Kim, J ;
Rosi, N ;
Vodak, D ;
Wachter, J ;
O'Keeffe, M ;
Yaghi, OM .
SCIENCE, 2002, 295 (5554) :469-472
[8]   Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content [J].
Evers, Scott ;
Nazar, Linda F. .
CHEMICAL COMMUNICATIONS, 2012, 48 (09) :1233-1235
[9]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+
[10]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]