Parity-time symmetry in parameter space of polarization

被引:10
作者
Ding, Qi [1 ]
Wang, Muguang [1 ]
Zhang, Jing [1 ]
Tang, Yu [1 ]
Li, Yan [1 ]
Han, Mengyao [1 ]
Guo, Yuxiao [1 ]
Zhang, Naihan [1 ]
Wu, Beilei [1 ]
Yan, Fengping [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Lightwave Technol, Minist Educ, Key Lab All Opt Network & Adv Telecommun Network, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTOELECTRONIC OSCILLATOR; LASER;
D O I
10.1063/5.0051064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Establishing parity-time (PT) symmetry in non-spatial space is a promising way to simplify the PT-symmetry system structure. In this paper, an implementation of PT symmetry in optical polarization space is reported. By utilizing the polarization multiplexing technology, PT symmetry is formed in overlapping spatial parameter space. The degeneracy of eigenmodes with two distinct PT phases in polarization space is demonstrated. In the PT-symmetric phase, the eigenmodes have real eigenfrequencies that respect PT symmetry, exhibiting broken degeneracy (mode splitting); in the PT-broken phase, the eigenmodes are degenerate with a pair of complex conjugate eigenfrequencies. The sharp-pointed peak filter response in the PT-broken phase due to the strong field localization is characterized, which explains the mode-selection mechanism of PT-symmetry breaking. The polarization-space PT symmetry is applied in a 7-km single-loop optoelectronic oscillator, and a stable single-mode oscillation signal is generated with a phase noise of -138 dBc/Hz at 10 kHz and side-mode suppression ratio of 49 dB. The approach expands the parameter spaces to carry out PT symmetry and could promote the integration of the PT-symmetry photon system. (c) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 36 条
[1]   Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J].
Assawaworrarit, Sid ;
Yu, Xiaofang ;
Fan, Shanhui .
NATURE, 2017, 546 (7658) :387-+
[2]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[3]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[4]   Effects of gain and bandwidth on the multimode behavior of optoelectronic microwave oscillators [J].
Chembo, Y. Kouomou ;
Larger, Laurent ;
Bendoula, Ryad ;
Colet, Pere .
OPTICS EXPRESS, 2008, 16 (12) :9067-9072
[5]   Parity-time-symmetric whispering-gallery mode nanoparticle sensor [Invited] [J].
Chen, Weijian ;
Zhang, Jing ;
Peng, Bo ;
Ozdemir, Sahin Kaya ;
Fan, Xudong ;
Yang, Lan .
PHOTONICS RESEARCH, 2018, 6 (05) :A23-A30
[6]   A Precisely Frequency-Tunable Parity-Time-Symmetric Optoelectronic Oscillator [J].
Ding, Qi ;
Wang, Muguang ;
Zhang, Jing ;
Mu, Hongqian ;
Wang, Chuncan ;
Fan, Guofang .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (23) :6569-6577
[7]   Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier [J].
Ding, Qi ;
Wang, Muguang ;
Mu, Hongqian ;
Tang, Yu ;
Zhang, Jing ;
Wu, Beilei ;
Li, Tangjun .
OPTICS COMMUNICATIONS, 2018, 427 :54-60
[8]   Hybrid Frequency-Tunable Parity-Time Symmetric Optoelectronic Oscillator [J].
Fan, Zhiqiang ;
Zhang, Weifeng ;
Qiu, Qi ;
Yao, Jianping .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (08) :2127-2133
[9]   Non-Hermitian photonics based on parity-time symmetry [J].
Feng, Liang ;
El-Ganainy, Ramy ;
Ge, Li .
NATURE PHOTONICS, 2017, 11 (12) :752-762
[10]   Single-mode laser by parity-time symmetry breaking [J].
Feng, Liang ;
Wong, Zi Jing ;
Ma, Ren-Min ;
Wang, Yuan ;
Zhang, Xiang .
SCIENCE, 2014, 346 (6212) :972-975