Explainable Prediction of Cardiac Arrhythmia Using Machine Learning

被引:4
作者
Ye, Xiaohong [1 ]
Huang, Yuanqi [2 ]
Lu, Qiang [3 ]
机构
[1] Jimei Univ, Chengyi Univ Coll, Xiamen, Peoples R China
[2] Fujian Nounal Univ, Sch Phys Educ & Sport Sci, Fuzhou, Peoples R China
[3] Jimei Univ, Sch Sci, Xiamen, Peoples R China
来源
2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021) | 2021年
关键词
Machine learning; biomedical informatics; Heart Rate Variability; Cardiac Arrhythmia; Ensemble Method; ATRIAL-FIBRILLATION; RHYTHM;
D O I
10.1109/CISP-BMEI53629.2021.9624213
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiac arrhythmia is characterized by abnormal electrical activity of the heart, which can be seen on an electrocardiogram (ECG). Machine learning approaches have shown a lot of promise in terms of assisting in illness diagnosis. In this paper, we propose a method for ensemble classification by combining Heart Rate Variability (HRV), age, sex features and Deep Neural Network (DNN) classification probability features, and achieved the average F1 score of 0.818. It also calculated the importance of features in eXtreme Gradient Boosting (XGBoost) classification decision, and proved the influence of auxiliary inputs (such as HRV, age and sex). This paper shows that explainable machine learning is a promising application in the prediction of arrhythmia.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[2]   Optimal parameters study for sample entropy-based atrial fibrillation organization analysis [J].
Alcaraz, Raul ;
Abasolo, Daniel ;
Hornero, Roberto ;
Rieta, Jose J. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 99 (01) :124-132
[3]  
Camm A. J., TASK FORCE EUROPEAN
[4]   Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy [J].
Carrara, Marta ;
Carozzi, Luca ;
Moss, Travis J. ;
de Pasquale, Marco ;
Cerutti, Sergio ;
Ferrario, Manuela ;
Lake, Douglas E. ;
Moorman, J. Randall .
PHYSIOLOGICAL MEASUREMENT, 2015, 36 (09) :1873-1888
[5]   Diagnosis of COVID-19 in CT image using CNN and XGBoost [J].
Carvalho, Edelson Damasceno ;
Carvalho, Edson Damasceno ;
de Carvalho Filho, Antonio Oseas ;
Duarte de Araujo, Flavio Henrique ;
Lira Rabelo, Ricardo de Andrade .
2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2020, :811-816
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[8]  
Elfaik H., J INTELL SYST
[9]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[10]   Automatic Cardiac Arrhythmia Classification Using Combination of Deep Residual Network and Bidirectional LSTM [J].
He, Runnan ;
Liu, Yang ;
Wang, Kuanquan ;
Zhao, Na ;
Yuan, Yongfeng ;
Li, Qince ;
Zhang, Henggui .
IEEE ACCESS, 2019, 7 :102119-102135