PROTON RADIOGRAPHY TO IMPROVE PROTON RADIOTHERAPY: SIMULATION STUDY AT DIFFERENT PROTON BEAM ENERGIES

被引:1
作者
Biegun, A. K. [1 ]
Takatsu, J. [2 ]
van Goethem, M-J. [3 ]
van der Graaf, E. R. [1 ]
van Beuzekom, M. [4 ]
Visser, J. [4 ]
Brandenburg, S. [1 ]
机构
[1] Univ Groningen, KVI Ctr Adv Radiat Technol, NL-9700 AB Groningen, Netherlands
[2] Osaka Univ, Grad Sch Med, Dept Radiat Oncol, Suita, Osaka 565, Japan
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, NL-9700 AB Groningen, Netherlands
[4] Natl Inst Subatom Phys Nikhef, Amsterdam, Netherlands
来源
ACTA PHYSICA POLONICA B | 2016年 / 47卷 / 02期
关键词
RANGE UNCERTAINTIES; CT; THERAPY;
D O I
10.5506/APhysPolB.47.329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To improve the quality of cancer treatment with protons, a translation of X-ray Computed Tomography (CT) images into a map of the proton stopping powers needs to be more accurate. Proton stopping powers determined from CT images have systematic uncertainties in the calculated proton range in a patient of typically 3-4 % and even up to 10% in a region containing bone. As a consequence, part of a tumor may receive no dose, or a very high dose can be delivered in healthy tissues and organs at risks (e.g. brain stem). A transmission radiograph of high-energy protons measuring proton stopping powers directly will allow to reduce these uncertainties, and thus improve the quality of treatment. The best way to obtain a sufficiently accurate radiograph is by tracking individual protons traversing the phantom (patient). In our simulations, we have used an ideal position sensitive detectors measuring a single proton before and after a phantom, while the residual energy of a proton was detected by a BaF2 crystal. To obtain transmission radiographs, different phantom materials have been irradiated with a 3 x 3 cm(2) scattered proton beam, with various beam energies. The simulations were done using the Geant4 simulation package. In this study, we focus on the simulations of the energy loss radiographs for various proton beam energies that are clinically available in proton radiotherapy.
引用
收藏
页码:329 / 334
页数:6
相关论文
共 12 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   The Italian project for a proton imaging device [J].
Cirrone, G. A. P. ;
Candiano, G. ;
Cuttone, G. ;
Lo Nigro, S. ;
Lo Presti, D. ;
Randazzo, N. ;
Sipala, V. ;
Russo, M. ;
Aiello, S. ;
Bruzzi, M. ;
Menichelli, D. ;
Secringella, M. ;
Miglio, S. ;
Bucciolini, M. ;
Talamonti, C. ;
Pallotta, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 576 (01) :194-197
[3]   In vivo proton range verification: a review [J].
Knopf, Antje-Christin ;
Lomax, Antony .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :131-160
[4]   Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications [J].
Landry, Guillaume ;
Parodi, Katia ;
Wildberger, Joachim E. ;
Verhaegen, Frank .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :5029-5048
[6]   200 MeV Proton Radiography Studies With a Hand Phantom Using a Prototype Proton CT Scanner [J].
Plautz, Tia ;
Bashkirov, V. ;
Feng, V. ;
Hurley, F. ;
Johnson, R. P. ;
Leary, C. ;
Macafee, S. ;
Plumb, A. ;
Rykalin, V. ;
Sadrozinski, H. F. -W. ;
Schubert, K. ;
Schulte, R. ;
Schultze, B. ;
Steinberg, D. ;
Witt, M. ;
Zatserklyaniy, A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :875-881
[7]   The calibration of CT Hounsfield units for radiotherapy treatment planning [J].
Schneider, U ;
Pedroni, E ;
Lomax, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (01) :111-124
[8]   PROTON RADIOGRAPHY AS A TOOL FOR QUALITY-CONTROL IN PROTON THERAPY [J].
SCHNEIDER, U ;
PEDRONI, E .
MEDICAL PHYSICS, 1995, 22 (04) :353-363
[9]   Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions [J].
Schneider, W ;
Bortfeld, T ;
Schlegel, W .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (02) :459-478
[10]   Site-specific range uncertainties caused by dose calculation algorithms for proton therapy [J].
Schuemann, J. ;
Dowdell, S. ;
Grassberger, C. ;
Min, C. H. ;
Paganetti, H. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (15) :4007-4031