A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot

被引:29
作者
Cruz, F. A. [1 ]
Poole, R. J. [2 ]
Afonso, A. M. [1 ]
Pinho, F. T. [3 ]
Oliveira, P. J. [4 ]
Alves, M. A. [1 ]
机构
[1] Univ Porto, Fac Engn, CEFT, Dept Engn Quim, P-4200465 Oporto, Portugal
[2] Univ Liverpool, Sch Engn, Liverpool L69 3GH, Merseyside, England
[3] Univ Porto, Fac Engn, CEFT, Dept Engn Mecan, P-4200465 Oporto, Portugal
[4] Univ Beira Interior, C MAST, Dept Engn Electromecan, P-6201001 Covilha, Portugal
基金
欧洲研究理事会;
关键词
Finite-volume method; Cross-slot flow; Elastic instabilities; Benchmark flow; Flow transitions; FINITE-VOLUME METHOD; ELASTIC INSTABILITIES; CONFORMATION TENSOR; FLUIDS; STABILITY; NUMBER;
D O I
10.1016/j.jnnfm.2014.09.015
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work we propose the cross-slot geometry as a candidate for a numerical benchmark flow problem for viscoelastic fluids. Extensive data of quantified accuracy is provided, obtained via Richardson extrapolation to the limit of infinite refinement using results for three different mesh resolutions, for the upper-convected Maxwell, Oldroyd-B and the linear form of the simplified Phan-Thien-Tanner constitutive models. Furthermore, we consider two types of flow geometry having either sharp or rounded corners, the latter with a radius of curvature equal to 5% of the channel's width. We show that for all models the inertialess steady symmetric flow may undergo a bifurcation to a steady asymmetric configuration, followed by a second transition to time-dependent flow, which is in qualitative agreement with previous experimental observations for low Reynolds number flows. The critical Deborah number for both transitions is quantified and a set of standard parameters is proposed for benchmarking purposes. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 35 条
[1]   The log-conformation tensor approach in the finite-volume method framework [J].
Afonso, A. ;
Oliveira, P. J. ;
Pinho, F. T. ;
Alves, M. A. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 157 (1-2) :55-65
[2]   Dynamics of high-Deborah-number entry flows: a numerical study [J].
Afonso, A. M. ;
Oliveira, P. J. ;
Pinho, F. T. ;
Alves, M. A. .
JOURNAL OF FLUID MECHANICS, 2011, 677 :272-304
[3]   Purely elastic instabilities in three-dimensional cross-slot geometries [J].
Afonso, A. M. ;
Alves, M. A. ;
Pinho, F. T. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (13-14) :743-751
[4]   A convergent and universally bounded interpolation scheme for the treatment of advection [J].
Alves, MA ;
Oliveira, PJ ;
Pinho, FT .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 41 (01) :47-75
[5]   Divergent flow in contractions [J].
Alves, Manuel A. ;
Poole, Robert J. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2007, 144 (2-3) :140-148
[6]   Elastic instabilities of polymer solutions in cross-channel flow [J].
Arratia, PE ;
Thomas, CC ;
Diorio, J ;
Gollub, JP .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[7]   Elastic instabilities in a microfluidic cross-slot flow of wormlike micellar solutions [J].
Dubash, Neville ;
Cheung, Perry ;
Shen, Amy Q. .
SOFT MATTER, 2012, 8 (21) :5847-5856
[8]   Constitutive laws for the matrix-logarithm of the conformation tensor [J].
Fattal, R ;
Kupferman, R .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 123 (2-3) :281-285
[9]  
Ferziger JH, 1996, INT J NUMER METH FL, V23, P1263, DOI 10.1002/(SICI)1097-0363(19961230)23:12<1263::AID-FLD478>3.0.CO
[10]  
2-V