Projected Gross-Pitaevskii equation for harmonically confined Bose gases at finite temperature

被引:92
作者
Blakie, PB
Davis, MJ
机构
[1] Univ Otago, Dunedin, New Zealand
[2] Univ Queensland, ARC Ctr Excellence Quantum Atom Opt, Sch Phys Sci, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevA.72.063608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.
引用
收藏
页数:12
相关论文
共 51 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]  
[Anonymous], SOV PHYS JETP
[3]  
Barrett M. D., COMMUNICATION
[4]  
BLAKIE PB, CONDMAT0508669
[5]   Properties of the stochastic Gross-Pitaevskii equation: finite temperature Ehrenfest relations and the optimal plane wave representation [J].
Bradley, AS ;
Blakie, PB ;
Gardiner, CW .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (23) :4259-4280
[6]   Temperature-dependent Bogoliubov approximation in the classical field approach to weakly interacting Bose gases [J].
Brewczyk, M ;
Borowski, P ;
Gajda, M ;
Rzazewski, K .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (13) :2725-2738
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   Calculation of the microcanonical temperature for the classical Bose field [J].
Davis, MJ ;
Blakie, PB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (48) :10259-10271
[9]   Microcanonical temperature for a classical field: Application to Bose-Einstein condensation [J].
Davis, MJ ;
Morgan, SA .
PHYSICAL REVIEW A, 2003, 68 (05) :10
[10]   Dynamics of thermal Bose fields in the classical limit [J].
Davis, MJ ;
Ballagh, RJ ;
Burnett, K .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (22) :4487-4512