A lack of Ricci bounds for the entropic measure on Wasserstein space over the interval

被引:5
作者
Chodosh, Otis [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Wasserstein space; Optimal transport; Geometry of spaces of measures; Lower bounds on curvature; METRIC-MEASURE-SPACES; INEQUALITY; GEOMETRY;
D O I
10.1016/j.jfa.2012.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the entropic measure, recently constructed by von Renesse and Sturm, a measure over the metric space of probability measures on the unit interval equipped with the 2-Wasserstein distance. We show that equipped with this measure, Wasserstein space over the interval does not admit generalized Ricci lower bounds in the entropic displacement convexity sense of Lott-Villani-Sturm. We discuss why this is contrary to what one might expect from heuristic considerations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4570 / 4581
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[2]  
[Anonymous], 1994, DIRICHLET FORMS SYMM
[3]  
Chodosh O., 2011, OPTIMAL TRANSPORT RI
[4]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[5]   The logarithmic Sobolev inequality for the Wasserstein diffusion [J].
Doering, Maik ;
Stannat, Wilhelm .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (1-2) :189-209
[6]  
Gigli N, 2012, MEM AM MATH SOC, V216, pVII
[7]  
Lebedev N.N., 1972, Dover Books on Math- ematics
[8]   Some geometric calculations on Wasserstein space [J].
Lott, John .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) :423-437
[9]   Ricci curvature for metric-measure spaces via optimal transport [J].
Lott, John ;
Villani, Cedric .
ANNALS OF MATHEMATICS, 2009, 169 (03) :903-991
[10]   Polar factorization of maps on Riemannian manifolds [J].
McCann, RJ .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :589-608