Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum

被引:33
作者
Biruma, Moses [2 ,3 ]
Martin, Tom [1 ]
Fridborg, Ingela [1 ]
Okori, Patrick [3 ]
Dixelius, Christina [1 ]
机构
[1] SLU, Dept Plant Biol & Forest Genet, Uppsala Bioctr, S-75007 Uppsala, Sweden
[2] Natl Agr Res Org, Entebbe, Uganda
[3] Makerere Univ, Dept Crop Sci, Kampala, Uganda
关键词
ARABIDOPSIS-THALIANA; PROTEIN; BIOSYNTHESIS; ANTHOCYANIN; ANTHRACNOSE; IMMUNITY; GENOME; DOMAIN; HOST; ACCUMULATION;
D O I
10.1007/s00122-011-1764-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The aim of this work was to identify plant resistance genes to the sorghum anthracnose fungus Colletotrichum sublineolum. cDNA-AFLP transcript profiling on two contrasting sorghum genotypes inoculated with C. sublineolum generated about 3,000 informative fragments. In a final set of 126 sequenced genes, 15 were identified as biotic stress related. Seven of the plant-derived genes were selected for functional analysis using a Brome mosaic virus-based virus-induced gene silencing (VIGS) system followed by fungal inoculation and quantitative real-time PCR analysis. The candidate set comprised genes encoding resistance proteins (Cs1A, Cs2A), a lipid transfer protein (SbLTP1), a zinc finger-like transcription factor (SbZnTF1), a rice defensin-like homolog (SbDEFL1), a cell death related protein (SbCDL1), and an unknown gene harboring a casein kinase 2-like domain (SbCK2). Our results demonstrate that down-regulation of Cs1A, Cs2A, SbLTP1, SbZnF1 and SbCD1 via VIGS, significantly compromised the resistance response while milder effects were observed with SbDEFL1 and SbCK2. Expanded genome analysis revealed that Cs1A and Cs2A genes are located in two different loci on chromosome 9 closely linked with duplicated genes Cs1B and Cs2B, respectively. The nucleotide binding-leucine rich repeat (NB-LRR) encoding Cs gene sequence information is presently employed in regional breeding programs.
引用
收藏
页码:1005 / 1015
页数:11
相关论文
共 68 条
  • [1] ProtTest: selection of best-fit models of protein evolution
    Abascal, F
    Zardoya, R
    Posada, D
    [J]. BIOINFORMATICS, 2005, 21 (09) : 2104 - 2105
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] Overexpression of the OsPDCD5 gene induces programmed cell death in rice
    Attia, K
    Li, KG
    Wei, C
    He, GM
    Su, W
    Yang, JS
    [J]. JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2005, 47 (09) : 1115 - 1122
  • [4] Role of plant hormones in plant defence responses
    Bari, Rajendra
    Jones, Jonathan D. G.
    [J]. PLANT MOLECULAR BIOLOGY, 2009, 69 (04) : 473 - 488
  • [5] A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions
    Birker, Doris
    Heidrich, Katharina
    Takahara, Hiroyuki
    Narusaka, Mari
    Deslandes, Laurent
    Narusaka, Yoshihiro
    Reymond, Matthieu
    Parker, Jane E.
    O'Connell, Richard
    [J]. PLANT JOURNAL, 2009, 60 (04) : 602 - 613
  • [6] RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica
    Bittner-Eddy, PD
    Crute, IR
    Holub, EB
    Beynon, JL
    [J]. PLANT JOURNAL, 2000, 21 (02) : 177 - 188
  • [7] The 'inner circle' of the cereal genomes
    Bolot, Stephanie
    Abrouk, Michael
    Masood-Quraishi, Umar
    Stein, Nils
    Messing, Joachim
    Feuillet, Catherine
    Salse, Jerome
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2009, 12 (02) : 119 - 125
  • [8] Host-microbe interactions: Shaping the evolution of the plant immune response
    Chisholm, ST
    Coaker, G
    Day, B
    Staskawicz, BJ
    [J]. CELL, 2006, 124 (04) : 803 - 814
  • [9] Plant immunity: a lesson from pathogenic bacterial effector proteins
    Cui, Haitao
    Xiang, Tingting
    Zhou, Jian-Min
    [J]. CELLULAR MICROBIOLOGY, 2009, 11 (10) : 1453 - 1461
  • [10] Pseudomonas syringae type III secretion system effectors: repertoires in search of functions
    Cunnac, Sebastien
    Lindeberg, Magdalen
    Collmer, Alan
    [J]. CURRENT OPINION IN MICROBIOLOGY, 2009, 12 (01) : 53 - 60