Semi-local modulo unities of Gauss sums

被引:3
作者
Beliaeva, T [1 ]
机构
[1] Univ Franche Comte, UMR 6623, F-25030 Besancon, France
关键词
Iwasawa theory; Greenberg Conjecture; semi-local units; Gauss sums;
D O I
10.1016/j.jnt.2004.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime number p and an abelian number field k, let k(infinity),k be the cyclotomic Z(p)-extension. Let X-infinity be the projective limit of the p-parts of the ideal class groups of each intermediate field of k(infinity)/k. It is conjectured (Greenberg's Conjecture) that X-infinity is finite when k is totally real. In this paper we give an interpretation of the characteristic polynomial of X-infinity in terms of certain Gauss sums. We also give analogous results at finite level. Our results generalize those obtained by Ichimura (J. Number Theory 68 (1998) 36) and Hachimori (Manuscripta Math. 95 (1998) 377) in the semi-simple case. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 157
页数:35
相关论文
共 28 条
  • [1] [Anonymous], 1977, SYMPOS
  • [2] Local units and Gauss sums
    Aoki, M
    [J]. JOURNAL OF NUMBER THEORY, 2003, 101 (02) : 270 - 293
  • [3] BELIAEVA T, 2004, THESIS U FRANCHE COM
  • [4] Class formulae for real abelian fields
    Belliard, JR
    Do, TNQ
    [J]. ANNALES DE L INSTITUT FOURIER, 2001, 51 (04) : 903 - 937
  • [5] BELLIARD JR, IN PRESS NAGOYA MATH
  • [6] Equivariant Tamagawa numbers, fitting ideals and Iwasawa theory
    Bley, W
    Burns, D
    [J]. COMPOSITIO MATHEMATICA, 2001, 126 (02) : 213 - 247
  • [7] COLEMAN R, 1989, ADV STUDIES PURE MAT, V0017, P00055, DOI 10.2969/aspm/01710055
  • [8] Do Nguyen Quang T., 1986, Ann. Inst. Fourier (Grenoble), V36, P27, DOI [10.5802/aif.1045, DOI 10.5802/AIF.104520]
  • [9] FEDERER LJ, 1981, INVENT MATH, V62, P443
  • [10] GILLARD R, 1979, ANN I FOURIER, V29, P1, DOI DOI 10.5802/AIF.763