Weak mixing implies mixing for maps on topological graphs

被引:5
作者
Banks, J [1 ]
Trotta, B [1 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
关键词
maps on topological graphs; topologically mixing; topologically weakly mixing; one-dimensional manifolds;
D O I
10.1080/1023619050029557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In section 1, we correct an error in the proof of Lemma 3.1 in L. Alsed, M.A. del Rio, and J.A. Rodriguez. Transitivity and dense periodicity for graph maps. J. Difference Equ. Appl. 9, 577-598, 2003. In section 2 we give a simple proof that weak mixing implies mixing for maps on topological graphs. The proofs can also be extended to (not necessarily compact) intervals, so in particular, this paper shows that for one-dimensional manifolds, weak mixing implies mixing.
引用
收藏
页码:1071 / 1080
页数:10
相关论文
共 10 条
[1]   Entropy of transitive tree maps [J].
Alseda, L ;
Baldwin, S ;
Llibre, J ;
Misiurewicz, M .
TOPOLOGY, 1997, 36 (02) :519-532
[2]   Transitivity and dense periodicity for graph maps [J].
Alsedà, LL ;
Del Río, MA ;
Rodríguez, JA .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (06) :577-598
[4]  
BANKS J, 1994, THESIS TROBE U AUSTR
[5]   THE ROLE OF TRANSITIVITY IN DEVANEYS DEFINITION OF CHAOS [J].
CRANNELL, A .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (09) :788-793
[6]  
Furstenberg H., 1967, MATH SYST THEORY, V1, P1, DOI [10.1007/BF01692494, DOI 10.1007/BF01692494]
[7]  
Lau K., 1973, MATH SYST THEORY, V6, P307
[8]  
Mane R., 1987, ERGODIC THEORY DIFFE
[9]   ON MAPS WITH DENSE ORBITS AND THE DEFINITION OF CHAOS [J].
SILVERMAN, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1992, 22 (01) :353-375
[10]  
STACEY P, 1992, UNPUB