MANIFOLD LEARNING BASED SUPERVISED HYPERSPECTRAL DATA CLASSIFICATION METHOD USING CLASS ENCODING

被引:2
作者
Zhang, Miao [1 ]
Guo, Wei [1 ]
Cui, Yiming [1 ]
Shen, Fei [2 ]
Shen, Yi [1 ]
机构
[1] Harbin Inst Technol, Dept Control Sci & Engn, Harbin, Peoples R China
[2] Shanghai Inst Spaceflight Control Technol, Shanghai, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
supervised classification; manifold learning; hyperspectral data; class encoding; SEMISUPERVISED DIMENSIONALITY REDUCTION;
D O I
10.1109/IGARSS.2016.7729817
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Manifold learning based unsupervised classification methods will be unable to obtain satisfactory results because of the lack of training samples. The employment of training samples' information makes manifold learning based classification become supervised, and thus brings the improvement on classification accuracy. In order to make full use of this information, we emphatically consider the hyperspectral data distribute by clusters. A novel supervised manifold learning method termed class encoding is proposed for hyperspectral data classification. The experimental results show that this algorithm has better classification performance than the existing supervised manifold learning algorithm.
引用
收藏
页码:3160 / 3163
页数:4
相关论文
共 9 条
[1]   Semisupervised Dimensionality Reduction With Pairwise Constraints for Hyperspectral Image Classification [J].
Chen, Shiguo ;
Zhang, Daoqiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (02) :369-373
[2]   Local Fisher embedding [J].
de Ridder, D ;
Loog, M ;
Reinders, MJT .
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, :295-298
[3]  
Geng X., 2015, IEEE T SYST MAN CY B, V35, P1098
[4]   Delineation of forest/nonforest land use classes using nearest neighbor methods [J].
Haapanen, R ;
Ek, AR ;
Bauer, ME ;
Finley, AO .
REMOTE SENSING OF ENVIRONMENT, 2004, 89 (03) :265-271
[5]   Cluster-space representation for hyperspectral data classification [J].
Jia, XP ;
Richards, JA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (03) :593-598
[6]   Implementation Strategies for Hyperspectral Unmixing Using Bayesian Source Separation [J].
Schmidt, Frederic ;
Schmidt, Albrecht ;
Treguier, Erwan ;
Guiheneuf, Mael ;
Moussaoui, Said ;
Dobigeon, Nicolas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4003-4013
[7]   Supervised Graph Embedding for Polarimetric SAR Image Classification [J].
Shi, Lei ;
Zhang, Lefei ;
Yang, Jie ;
Zhang, Liangpei ;
Li, Pingxiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :216-220
[8]  
Zhang L, 2012, IEEE T GEOSCI REMOTE, V50, P3202, DOI [10.1109/TGRS.2011.2180392, 10.1109/TGRS.2012.2197860]
[9]   Semisupervised Dimensionality Reduction of Hyperspectral Images via Local Scaling Cut Criterion [J].
Zhang, Xiangrong ;
He, Yudi ;
Zhou, Nan ;
Zheng, Yaoguo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (06) :1547-1551