AVERAGE TWIN PRIME CONJECTURE FOR ELLIPTIC CURVES

被引:24
作者
Balog, Antal [1 ]
Cojocaru, Alina-Carmen [2 ,3 ]
David, Chantal [4 ,5 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[3] Acad Romana, Inst Math Simion Stoilow, Bucharest 010702, Romania
[4] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[5] Inst Adv Study, Princeton, NJ 08540 USA
基金
加拿大自然科学与工程研究理事会;
关键词
MODULO-P; NUMBER; POINTS; ORDERS;
D O I
10.1353/ajm.2011.0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q. In 1988, N. Koblitz conjectured a precise asymptotic for the number of primes p up to x such that the order of the group of points of E over IF is prime. This is an analogue of the Hardy-Littlewood twin prime conjecture in the case of elliptic curves. Koblitz's conjecture is still widely open. In this paper we prove that Koblitz's conjecture is true on average over a two-parameter family of elliptic curves. One of the key ingredients in the proof is a short average distribution result of primes in the style of Barban-Davenport-Halberstam, where the average is taken over prime differences and over arithmetic progressions.
引用
收藏
页码:1179 / 1229
页数:51
相关论文
共 35 条
[1]  
Ali Miri S., 2001, International Conference on Cryptology in India, P91
[2]  
Baier S., 2009, NEW DIRECTIONS VALUE, P11
[3]  
BALOG A, 1990, ANAL NUMBER THEORY P, V85, P47
[4]   SATO-TATE, CYCLICITY, AND DIVISIBILITY STATISTICS ON AVERAGE FOR ELLIPTIC CURVES OF SMALL HEIGHT [J].
Banks, William D. ;
Shparlinski, Igor E. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 173 (01) :253-277
[5]   Reductions of an elliptic curve with almost prime orders [J].
Cojocaru, AC .
ACTA ARITHMETICA, 2005, 119 (03) :265-289
[6]  
Davenport H., 2000, Graduate Texts in Mathematics, V74
[7]  
David C, 1999, INT MATH RES NOTICES, V1999, P165
[8]  
David C., 2004, J RAMANUJAN MATH SOC, V19, P181
[9]  
David C., FORUM MATH IN PRESS
[10]  
Deuring M., 1941, Abh. Math. Sem. Hansischen Univ, V14, P197, DOI 10.1007/BF02940746