Oxide nanowires for solar cell applications

被引:57
作者
Zhang, Qifeng [1 ]
Yodyingyong, Supan [1 ]
Xi, Junting [1 ]
Myers, Daniel [1 ]
Cao, Guozhong [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
TIO2 NANOTUBE ARRAYS; CONVERSION EFFICIENCY; HIGH-PERFORMANCE; ZNO NANORODS; ION BATTERY; FABRICATION; ELECTROLUMINESCENCE; TRANSISTORS; TITANIUM;
D O I
10.1039/c2nr11595f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxide nanowire arrays were studied for their applications to solar cells. It was demonstrated that the nanowires could provide direct pathways for electron transport in dye-sensitized solar cells and therefore, while forming photoelectrode films, they offered better suppression of charge recombination than nanoparticles. However, the photoelectron films consisting of nanowires suffered a disadvantage in giving large surface area for dye adsorption. Such a shortcoming of nanowires had been exemplified in this paper illustrating that it could be well compensated by incorporating with nanoparticles to form a nanoparticle-nanowire array hybrid photoelectrode film. The oxide nanowires were also demonstrated to be able to enhance the performance of inverted structure polymer solar cells as a cathode buffer layer by establishing a large interface with the polymers so as to facilitate the transport of photogenerated electrons from the polymer to the electron collecting electrode. Such an enhancement effect could be further boosted while the nanowires were replaced with nanotubes; the latter may build up larger interface with the polymers than the former and therefore facilitates the electron transport more efficiently.
引用
收藏
页码:1436 / 1445
页数:10
相关论文
共 41 条
[1]   Double-Gate Nanowire Field Effect Transistor for a Biosensor [J].
Ahn, Jae-Hyuk ;
Choi, Sung-Jin ;
Han, Jin-Woo ;
Park, Tae Jung ;
Lee, Sang Yup ;
Choi, Yang-Kyu .
NANO LETTERS, 2010, 10 (08) :2934-2938
[2]   Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells [J].
Boix, Pablo P. ;
Ajuria, Jon ;
Etxebarria, Ikerne ;
Pacios, Roberto ;
Garcia-Belmonte, Germa ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05) :407-411
[3]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[6]   Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells [J].
Chou, Tammy P. ;
Zhang, Qifeng ;
Cao, Guozhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (50) :18804-18811
[7]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[8]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[9]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[10]   A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer [J].
de Bruyn, P. ;
Moet, D. J. D. ;
Blom, P. W. M. .
ORGANIC ELECTRONICS, 2010, 11 (08) :1419-1422