Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2

被引:155
作者
Wenzel, Sabrina [1 ]
Cox, Peter M. [2 ]
Eyring, Veronika [1 ]
Friedlingstein, Pierre [2 ]
机构
[1] Deutsches Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany
[2] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
关键词
NORTHERN ECOSYSTEMS; ELEVATED CO2; CARBON; CLIMATE; CMIP5; MODELS;
D O I
10.1038/nature19772
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations(1,2) contribute to the large spread in projections of future climate change(3,4). Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies(5-7). Here we demonstrate emergent constraints(8-11) on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP(12-14). Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 +/- 9 per cent for high-latitude ecosystems and 32 +/- 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
引用
收藏
页码:499 / +
页数:9
相关论文
共 19 条
[1]   Constraints on future changes in climate and the hydrologic cycle [J].
Allen, MR ;
Ingram, WJ .
NATURE, 2002, 419 (6903) :224-+
[2]   Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models [J].
Anav, A. ;
Friedlingstein, P. ;
Kidston, M. ;
Bopp, L. ;
Ciais, P. ;
Cox, P. ;
Jones, C. ;
Jung, M. ;
Myneni, R. ;
Zhu, Z. .
JOURNAL OF CLIMATE, 2013, 26 (18) :6801-6843
[3]  
Ciais P, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P465
[4]   Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability [J].
Cox, Peter M. ;
Pearson, David ;
Booth, Ben B. ;
Friedlingstein, Pierre ;
Huntingford, Chris ;
Jones, Chris D. ;
Luke, Catherine M. .
NATURE, 2013, 494 (7437) :341-344
[5]   ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP [J].
Eyring, Veronika ;
Righi, Mattia ;
Lauer, Axel ;
Evaldsson, Martin ;
Wenzel, Sabrina ;
Jones, Colin ;
Anav, Alessandro ;
Andrews, Oliver ;
Cionni, Irene ;
Davin, Edouard L. ;
Deser, Clara ;
Ehbrecht, Carsten ;
Friedlingstein, Pierre ;
Gleckler, Peter ;
Gottschaldt, Klaus-Dirk ;
Hagemann, Stefan ;
Juckes, Martin ;
Kindermann, Stephan ;
Krasting, John ;
Kunert, Dominik ;
Levine, Richard ;
Loew, Alexander ;
Maekelae, Jarmo ;
Martin, Gill ;
Mason, Erik ;
Phillips, Adam S. ;
Read, Simon ;
Rio, Catherine ;
Roehrig, Romain ;
Senftleben, Daniel ;
Sterl, Andreas ;
van Ulft, Lambertus H. ;
Walton, Jeremy ;
Wang, Shiyu ;
Williams, Keith D. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) :1747-1802
[6]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353
[7]   Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks [J].
Friedlingstein, Pierre ;
Meinshausen, Malte ;
Arora, Vivek K. ;
Jones, Chris D. ;
Anav, Alessandro ;
Liddicoat, Spencer K. ;
Knutti, Reto .
JOURNAL OF CLIMATE, 2014, 27 (02) :511-526
[8]   Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960 [J].
Graven, H. D. ;
Keeling, R. F. ;
Piper, S. C. ;
Patra, P. K. ;
Stephens, B. B. ;
Wofsy, S. C. ;
Welp, L. R. ;
Sweeney, C. ;
Tans, P. P. ;
Kelley, J. J. ;
Daube, B. C. ;
Kort, E. A. ;
Santoni, G. W. ;
Bent, J. D. .
SCIENCE, 2013, 341 (6150) :1085-1089
[9]   Direct human influence on atmospheric CO2 seasonality from increased cropland productivity [J].
Gray, Josh M. ;
Frolking, Steve ;
Kort, Eric A. ;
Ray, Deepak K. ;
Kucharik, Christopher J. ;
Ramankutty, Navin ;
Friedl, Mark A. .
NATURE, 2014, 515 (7527) :398-+
[10]   Using the current seasonal cycle to constrain snow albedo feedback in future climate change [J].
Hall, A ;
Qu, X .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (03)