Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm

被引:7
作者
Cervantes-Sanchez, Fernando [1 ]
Cruz-Aceves, Ivan [2 ]
Hernandez-Aguirre, Arturo [1 ]
Gabriel Avina-Cervantes, Juan [3 ]
Solorio-Meza, Sergio [4 ]
Ornelas-Rodriguez, Manuel [5 ]
Torres-Cisneros, Andmiguel [3 ]
机构
[1] Ctr Invest Matemat CIMAT, AC, Jalisco S-N, Guanajuato 36000, GTO, Mexico
[2] Ctr Invest Matemat CIMAT, CONACYT, AC, Jalisco S-N, Guanajuato 36000, GTO, Mexico
[3] Univ Guanajuato, DICIS, Comunidad Palo Blanco S-N, Salamanca 36885, GTO, Mexico
[4] UMAE 1 Bajio, IMSS, Unidad Invest, Leon, GTO, Mexico
[5] Tecnol Nacl Mexico Inst Tecnol Leon, Av Tecnol S-N, Leon 37290, GTO, Mexico
关键词
BLOOD-VESSELS; ARTERY TREE; ENHANCEMENT; EXTRACTION;
D O I
10.1155/2016/2420962
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (A(z)) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with A(z) = 0.9502 over a training set of 40 images and A(z) = 0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1998, Mach Learn, DOI DOI 10.1023/A:1017181826899
[2]   Design and performance analysis of oriented feature detectors [J].
Ayres, Fabio J. ;
Rangayyan, Rangaraj M. .
JOURNAL OF ELECTRONIC IMAGING, 2007, 16 (02)
[3]   Hybrid retinal image registration [J].
Chanwimaluang, T ;
Fan, GL ;
Fransen, SR .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (01) :129-142
[4]  
CHANWIMALUANG T, 2003, P INT S CIRC SYST, V5, P21, DOI DOI 10.1109/ISCAS.2003.1206162
[5]   DETECTION OF BLOOD-VESSELS IN RETINAL IMAGES USING TWO-DIMENSIONAL MATCHED-FILTERS [J].
CHAUDHURI, S ;
CHATTERJEE, S ;
KATZ, N ;
NELSON, M ;
GOLDBAUM, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (03) :263-269
[6]   Detection of coronary artery tree using morphological operator [J].
Eiho, S ;
Qian, Y .
COMPUTERS IN CARDIOLOGY 1997, VOL 24, 1997, 24 :525-528
[7]  
Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
[8]  
Gabor D., 1946, J. Inst. Electr. Eng. (London), V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074]
[9]   A Boltzmann based estimation of distribution algorithm [J].
Ivvan Valdez, S. ;
Hernandez, Arturo ;
Botello, Salvador .
INFORMATION SCIENCES, 2013, 236 :126-137
[10]  
Kang WW, 2013, INT CONF MEASURE, P696, DOI 10.1109/MIC.2013.6758057