A classification of graded extensions in a skew Laurent polynomial ring

被引:10
作者
Xie, Guangming [1 ]
Marubayashi, Hidetoshi [2 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
[2] Tokushima Bunri Univ, Fac Engn, Sanuki, Kagawa 7692193, Japan
关键词
graded extension; total valuation ring; skew Laurent polynomial ring; homogeneous element; division ring;
D O I
10.2969/jmsj/06020423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a total valuation ring of a division ring K with an automorphism or and let A = circle plus i is an element of zA(i)X(i) be a graded extension of V in K[X, X-1; sigma], the skew Laurent polynomial ring. We classify A by distinguishing four different types based on the properties of A, and A(-1). A complete description of A(i) for all i is an element of Z is given in the case where A(1) is a finitely generated left O-l(A(1))-ideal.
引用
收藏
页码:423 / 443
页数:21
相关论文
共 7 条
[1]   Gauss extensions and total graded subrings for crossed product algebras [J].
Brungs, H. H. ;
Marubayashi, H. ;
Osmanagic, E. .
JOURNAL OF ALGEBRA, 2007, 316 (01) :189-205
[2]   Valuation rings in ore extensions [J].
Brungs, HH ;
Schröder, M .
JOURNAL OF ALGEBRA, 2001, 235 (02) :665-680
[3]   EXTENSIONS OF CHAIN RINGS [J].
BRUNGS, HH ;
TORNER, G .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (01) :93-104
[4]   On R-ideals of a Dubrovin valuation ring R [J].
Irawati, S ;
Marubayashi, H ;
Ueda, A .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) :261-267
[5]  
Marubayashi H., 1997, K MONOGR MATH, V3
[6]   Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial ring [J].
Xie, GM ;
Kobayashi, S ;
Marubayashi, H ;
Popescu, N ;
Vraciu, C .
ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (01) :57-68
[7]   Non-commutative valuation rings of K (X; σ, δ) over a division ring K [J].
Xie, GM ;
Marubayashi, H ;
Kobayashi, S ;
Komatsu, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) :737-752