Numerical analysis of 3D micropolar nanofluid flow induced by an exponentially stretching surface embedded in a porous medium

被引:23
|
作者
Subhani, M. [1 ]
Nadeem, S. [1 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2017年 / 132卷 / 10期
关键词
HEAT-TRANSFER; BOUNDARY-LAYER; NATURAL-CONVECTION; SENSITIVITY-ANALYSIS; MASS-TRANSFER; FLUID; SHEET; NANOPARTICLES; SIMULATION; TRANSPORT;
D O I
10.1140/epjp/i2017-11660-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The present article is devoted to probe the behavior of a three-dimensional micropolar nanofluid over an exponentially stretching surface in a porous medium. The mathematical model is constructed in the form of partial differential equations using the boundary layer approach. Then by employing similarity transformations, the modelled partial differential equations are transformed to ordinary differential equations. The solution of subsequent ODEs is derived by utilizing the BVP-4C technique alongside the shooting scheme. The graphical illustrations are presented to interpret the salient features of pertinent physical parameters on the concerned profiles for different kinds of nanoparticles, namely copper, titania and alumina with water as the base fluid. For a better understanding of the fluid flow, the numerical variation in the local skin friction coefficients, Cf-x and Cf-y, and local Nusselt number is analyzed through tables. We can see, from the present study, that the omission of porous matrix enhances the flow of the fluid. Microrotation has a decreasing impact on the skin friction whereas it increases the rate of the heat transfer of the nanofluid.
引用
收藏
页数:12
相关论文
共 50 条