The effect of coherent interface on strain-rate sensitivity of highly textured Cu/Ni and Cu/V multilayers

被引:32
作者
Liu, Y. [1 ]
Yang, K. M. [1 ]
Hay, J. [2 ]
Fu, E. G. [3 ]
Zhang, X. [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Nanomech Inc, Oak Ridge, TN 37830 USA
[3] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[4] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
基金
中国国家自然科学基金;
关键词
Nanoindentation; Strain-rate sensitivity (SRS); Multilayers; Semi-coherent interface; Dislocation activation volume; CHANNEL ANGULAR EXTRUSION; ATOMISTIC SIMULATIONS; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; ULTRAFINE GRAIN; NANOCRYSTALLINE; BEHAVIOR; NANOINDENTATION; EVOLUTION; NI;
D O I
10.1016/j.scriptamat.2018.10.021
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The strain-rate sensitivity (SRS) depends on the evolution of applied shear stress and dislocation activation volume. Quantifying SRS at different grain sizes is important to understand thermally activated plastic deformation. Here we present SRS studies of highly textured Cu/Ni and Cu/V multilayers with individual layer thickness (h) varying from 1 to 100 nm. When h > 10 nm, the SRS of Cu/Ni multilayers increases with decreasing h, but the opposite holds when h < 10 nm due to the formation of coherent interface. In comparison, the SRS of Cu/V multi layers keeps unchanged when h < 10 nm. Our findings provide more insight to understand the size-dependent deformation mechanisms in multilayers. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:33 / 37
页数:5
相关论文
共 40 条
[1]  
[Anonymous], J MAT RES
[2]   Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression [J].
Carpenter, J. S. ;
Misra, A. ;
Uchic, M. D. ;
Anderson, P. M. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[3]  
CARREKER RP, 1953, ACTA METALL MATER, V1, P656
[4]   Self-organization of helium precipitates into elongated channels within metal nanolayers [J].
Chen, Di ;
Li, Nan ;
Yuryev, Dina ;
Baldwin, J. Kevin ;
Wang, Yongqiang ;
Demkowicz, Michael J. .
SCIENCE ADVANCES, 2017, 3 (11)
[5]   Hardness and strain rate sensitivity of nanocrystalline Cu [J].
Chen, J ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 2006, 54 (11) :1913-1918
[6]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[7]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[8]   Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes [J].
Dalla Torre, F ;
Lapovok, R ;
Sandlin, J ;
Thomson, PF ;
Davies, CHJ ;
Pereloma, EV .
ACTA MATERIALIA, 2004, 52 (16) :4819-4832
[9]   Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes [J].
Dalla Torre, FH ;
Pereloma, EV ;
Davies, CHJ .
ACTA MATERIALIA, 2006, 54 (04) :1135-1146
[10]  
DORN JE, 1964, T METALL SOC AIME, V230, P1052