Optimization of Linear Systems Subject to Bounded Exogenous Disturbances: The Invariant Ellipsoid Technique

被引:64
作者
Khlebnikov, M. V. [1 ]
Polyak, B. T. [1 ]
Kuntsevich, V. M. [2 ,3 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
[2] Natl Acad Sci, Inst Space Res, Kiev, Ukraine
[3] Natl Space Agcy, Kiev, Ukraine
基金
俄罗斯基础研究基金会;
关键词
INTERNAL-MODEL PRINCIPLE; TO-PEAK GAIN; NONRANDOM DISTURBANCES; OPTIMAL CONTROLLER; STATE ESTIMATION; ROBUST; REJECTION; DESIGN; APPROXIMATIONS; STABILIZATION;
D O I
10.1134/S0005117911110026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This survey covers a variety of results associated with control of systems subjected to arbitrary bounded exogenous disturbances. The method of invariant ellipsoids reduces the design of optimal controllers to finding the smallest invariant ellipsoid of the closed-loop dynamical system. The main tool of this approach is the linear matrix inequality technique. This simple yet versatile approach has high potential in extensions and generalizations; it is equally applicable to both the continuous and discrete time versions of the problems.
引用
收藏
页码:2227 / 2275
页数:49
相关论文
共 93 条
[1]  
Abedor J, 1996, INT J ROBUST NONLIN, V6, P899, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO
[2]  
2-G
[3]  
Aleksandrov AG, 1998, AUTOMAT REM CONTR+, V59, P973
[4]  
[Anonymous], UPRAVLENIE USLOVIYAK
[5]  
[Anonymous], H8 OPTIMAL CONTROL R
[6]  
[Anonymous], P 2 TRAD ALL RUSS YO
[7]  
[Anonymous], IZV ROSS AKAD NAUK T
[8]  
[Anonymous], 2004, TEORIYA MATRITS
[9]  
[Anonymous], SIB MAT ZH
[10]  
[Anonymous], 2007, STOKHASTICHESKAYA OP