Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

被引:25
作者
Jahangir-Moghadam, Mohammadreza [1 ,2 ]
Ahmadi-Majlan, Kamyar [1 ,3 ]
Shen, Xuan [4 ]
Droubay, Timothy
Bowden, Mark
Chrysler, Matthew [1 ]
Su, Dong [4 ]
Chambers, Scott A.
Ngai, Joseph H. [1 ]
机构
[1] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
[2] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[3] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 76019 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
PRECISE DETERMINATION; DIELECTRICS; SILICON; BATIO3; SRTIO3; DISCONTINUITIES; INTEGRATION; GE;
D O I
10.1002/admi.201400497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to electrically coupling crystalline oxides with semiconductors to realize functional behavior is to control the manner in which their bands align at interfaces. Here, principles of band-gap engineering traditionally used at heterojunctions between conventional semiconductors are applied to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO3 and Ge, in which the band-gap of the former is enhanced with Zr content x. Structural and electrical characterization of SrZrxTi1-xO3-Ge heterojunctions for x = 0.2 to 0.75 are presented and it is demonstrated that the band offset can be tuned from type-II to type-I, with the latter being verified using photoemission measurements. The type-I band offset provides a platform to integrate the dielectric, ferroelectric, and ferromagnetic functionalities of oxides with semiconducting devices.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Photonic band-gap maps for different two dimensionally periodic photonic crystal structures [J].
Dyogtyev, A. V. ;
Sukhoivanov, I. A. ;
De La Rue, R. M. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (01)
[22]   Piezoelectric force microscopy of crystalline oxide-semiconductor heterostructures [J].
Marshall, M. S. J. ;
Kumah, D. P. ;
Reiner, J. W. ;
Baddorf, A. P. ;
Ahn, C. H. ;
Walker, F. J. .
APPLIED PHYSICS LETTERS, 2012, 101 (10)
[23]   Band-gap modulation of graphane-like SiC nanoribbons under uniaxial elastic strain [J].
Gao, Ben-Ling ;
Xu, Qing-Qiang ;
Ke, San-Huang ;
Xu, Ning ;
Hu, Guang ;
Wang, Yanzong ;
Liang, Feng ;
Tang, Yalu ;
Xiong, Shi-Jie .
PHYSICS LETTERS A, 2014, 378 (5-6) :565-569
[24]   Wafer-Scale Strain Engineering of Ultrathin Semiconductor Crystalline Layers [J].
Leite, Marina S. ;
Warmann, Emily C. ;
Kimball, Gregory M. ;
Burgos, Stanley P. ;
Callahan, Dennis M. ;
Atwater, Harry A. .
ADVANCED MATERIALS, 2011, 23 (33) :3801-+
[25]   Atomistic Origin and Pressure Dependence of Band Gap Variation in Semiconductor Nanocrystals [J].
Ouyang, G. ;
Sun, C. Q. ;
Zhu, W. G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (22) :9516-9519
[26]   Band gap opening in tetragonal stanene monolayer by hydrogenation engineering [J].
Xu, Chunyan ;
Zhang, Jing ;
Guo, Zexuan ;
Yuan, Xiaoxi ;
Tian, Yu .
SOLID STATE COMMUNICATIONS, 2021, 331
[27]   Modeling the interface between crystalline silicon and silicon oxide polymorphs [J].
Kovacevic, Goran ;
Pivac, Branko .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (04) :717-722
[28]   Narrow-band metal-oxide-semiconductor photodetector [J].
Ho, W. S. ;
Lin, C. -H. ;
Cheng, T. -H. ;
Hsu, W. W. ;
Chen, Y. -Y. ;
Kuo, P. -S. ;
Liu, C. W. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)
[29]   Substantial band-gap narrowing of α-Si3N4 induced by heavy Al doping [J].
Xiao, W. ;
Geng, W. T. .
PHYSICS LETTERS A, 2011, 375 (30-31) :2874-2877
[30]   Mapping hidden space-charge distributions across crystalline metal oxide/group IV semiconductor interfaces [J].
Chambers, S. A. ;
Chrysler, M. ;
Ngai, J. H. ;
Lee, T-L ;
Gabel, J. ;
Matthews, B. E. ;
Spurgeon, S. R. ;
Bowden, M. E. ;
Zhu, Z. ;
Sushko, P., V .
PHYSICAL REVIEW MATERIALS, 2022, 6 (01)