Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

被引:25
|
作者
Jahangir-Moghadam, Mohammadreza [1 ,2 ]
Ahmadi-Majlan, Kamyar [1 ,3 ]
Shen, Xuan [4 ]
Droubay, Timothy
Bowden, Mark
Chrysler, Matthew [1 ]
Su, Dong [4 ]
Chambers, Scott A.
Ngai, Joseph H. [1 ]
机构
[1] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
[2] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[3] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 76019 USA
[4] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
来源
ADVANCED MATERIALS INTERFACES | 2015年 / 2卷 / 04期
关键词
PRECISE DETERMINATION; DIELECTRICS; SILICON; BATIO3; SRTIO3; DISCONTINUITIES; INTEGRATION; GE;
D O I
10.1002/admi.201400497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to electrically coupling crystalline oxides with semiconductors to realize functional behavior is to control the manner in which their bands align at interfaces. Here, principles of band-gap engineering traditionally used at heterojunctions between conventional semiconductors are applied to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO3 and Ge, in which the band-gap of the former is enhanced with Zr content x. Structural and electrical characterization of SrZrxTi1-xO3-Ge heterojunctions for x = 0.2 to 0.75 are presented and it is demonstrated that the band offset can be tuned from type-II to type-I, with the latter being verified using photoemission measurements. The type-I band offset provides a platform to integrate the dielectric, ferroelectric, and ferromagnetic functionalities of oxides with semiconducting devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Band-gap engineering of semiconductor nanowires through composition modulation
    Liang, YQ
    Zhai, L
    Zhao, XS
    Xu, DS
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15): : 7120 - 7123
  • [2] Tuning band alignment at a semiconductor-crystalline oxide heterojunction via electrostatic modulation of the interfacial dipole
    Chrysler, M.
    Gabel, J.
    Lee, T-L
    Penn, A. N.
    Matthews, B. E.
    Kepaptsoglou, D. M.
    Ramasse, Q. M.
    Paudel, J. R.
    Sah, R. K.
    Grassi, J. D.
    Zhu, Z.
    Gray, A. X.
    LeBeau, J. M.
    Spurgeon, S. R.
    Chambers, S. A.
    Sushko, P., V
    Ngai, J. H.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (10)
  • [3] Image-potential band-gap narrowing at a metal/semiconductor interface
    Arita, R
    Tanida, Y
    Kuroki, K
    Aoki, H
    PHYSICAL REVIEW B, 2001, 64 (24) : 2451121 - 2451126
  • [4] BAND-GAP ENGINEERING - FROM PHYSICS AND MATERIALS TO NEW SEMICONDUCTOR-DEVICES
    CAPASSO, F
    SCIENCE, 1987, 235 (4785) : 172 - 176
  • [5] Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods
    Sitt, Amit
    Hadar, Ido
    Banin, Uri
    NANO TODAY, 2013, 8 (05) : 494 - 513
  • [6] NONPARABOLICITY AS A TOOL IN BAND-GAP ENGINEERING
    LANDSBERG, PT
    YU, YJ
    JOURNAL OF APPLIED PHYSICS, 1988, 63 (05) : 1789 - 1791
  • [7] NONMONOTONIC DEPENDENCE OF THE WIDTH OF THE BAND-GAP OF A SEMICONDUCTOR FILM WITH A NEAR-ZERO BAND-GAP
    GERCHIKOV, LG
    SUBASHIEV, AV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1989, 23 (12): : 1368 - 1370
  • [8] Size effects on the band-gap of semiconductor compounds
    Li, M.
    Li, J. C.
    MATERIALS LETTERS, 2006, 60 (20) : 2526 - 2529
  • [9] Wide band-gap power semiconductor devices
    Millan, J.
    IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (05) : 372 - 379
  • [10] BAND-GAP OF AGGATE2 SEMICONDUCTOR
    CHATRAPHORN, S
    JOURNAL OF THE SCIENCE SOCIETY OF THAILAND, 1980, 6 (03): : 123 - 129