Quantum Squeezing Induced Optical Nonreciprocity

被引:151
作者
Tang, Lei [1 ,2 ]
Tang, Jiangshan [1 ,2 ]
Chen, Mingyuan [1 ,2 ]
Nori, Franco [3 ,4 ]
Xiao, Min [1 ,2 ,5 ]
Xia, Keyu [1 ,2 ,6 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[3] RIKEN, Quantum Comp Ctr, Cluster Pioneering Res, Wako, Saitama 3510198, Japan
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[5] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[6] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会; 日本科学技术振兴机构; 国家重点研发计划;
关键词
ISOLATORS; SWITCH; OUTPUT;
D O I
10.1103/PhysRevLett.128.083604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an all-optical approach to achieve optical nonreciprocity on a chip by quantum squeezing one of two coupled resonator modes. By parametric pumping a x(2)-nonlinear resonator unidirectionally with a classical coherent field, we squeeze the resonator mode in a selective direction due to the phasematching condition, and induce a chiral photon interaction between two resonators. Based on this chiral interresonator coupling, we achieve an all-optical diode and a three-port quasicirculator. By applying a second squeezed-vacuum field to the squeezed resonator mode, our nonreciprocal device also works for single-photon pulses. We obtain an isolation ratio of 40 dB for the diode and fidelity of > 98% for the quasicirculator, and insertion loss of < 1 dB for both. We also show that nonreciprocal transmission of strong light can be switched on and off by a relative weak pump light. This achievement implies a nonreciprocal optical transistor. Our protocol opens up a new route to achieve integrable all-optical nonreciprocal devices permitting chip-compatible optical isolation and nonreciporcal quantum information processing.
引用
收藏
页数:7
相关论文
共 73 条
[1]  
Agarwal GS, 2013, QUANTUM OPTICS, P1
[2]   All-optical polariton transistor [J].
Ballarini, D. ;
De Giorgi, M. ;
Cancellieri, E. ;
Houdre, R. ;
Giacobino, E. ;
Cingolani, R. ;
Bramati, A. ;
Gigli, G. ;
Sanvitto, D. .
NATURE COMMUNICATIONS, 2013, 4
[3]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[4]   Topological non-Hermitian origin of surface Maxwell waves [J].
Bliokh, Konstantin Y. ;
Leykam, Daniel ;
Lein, Max ;
Nori, Franco .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Transverse and longitudinal angular momenta of light [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 592 :1-38
[6]   Quantum spin Hall effect of light [J].
Bliokh, Konstantin Y. ;
Smirnova, Daria ;
Nori, Franco .
SCIENCE, 2015, 348 (6242) :1448-1451
[7]   Quantum amplification of boson-mediated interactions [J].
Burd, S. C. ;
Srinivas, R. ;
Knaack, H. M. ;
Ge, W. ;
Wilson, A. C. ;
Wineland, D. J. ;
Leibfried, D. ;
Bollinger, J. J. ;
Allcock, D. T. C. ;
Slichter, D. H. .
NATURE PHYSICS, 2021, 17 (08) :898-+
[8]   QUANTUM TRAJECTORY THEORY FOR CASCADED OPEN SYSTEMS [J].
CARMICHAEL, HJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2273-2276
[9]  
Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/nphoton.2014.133, 10.1038/NPHOTON.2014.133]
[10]   All-Optical Switch and Transistor Gated by One Stored Photon [J].
Chen, Wenlan ;
Beck, Kristin M. ;
Buecker, Robert ;
Gullans, Michael ;
Lukin, Mikhail D. ;
Tanji-Suzuki, Haruka ;
Vuletic, Vladan .
SCIENCE, 2013, 341 (6147) :768-770