Experimental and numerical evaluation of thermal conductivity of graphene nanoplatelets reinforced aluminium composites produced by powder metallurgy and hot extrusion technique

被引:17
作者
Harichandran, R. [1 ]
Kumar, R. Vignesh [1 ]
Venkateswaran, M. [1 ]
机构
[1] Natl Engn Coll, Dept Mech Engn, Kovilpatti 628503, Tamil Nadu, India
关键词
Graphene nanoplatelets; Aluminium matrix composite; Thermal conductivity; Experimental and numerical evaluation; Theoretical models; MECHANICAL-PROPERTIES; NANOCOMPOSITES;
D O I
10.1016/j.jallcom.2021.163401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene Nanoplatelets(GNPs) dispersed aluminium composites with excellent mechanical and thermal properties offer great potentials for heat exchanger applications. Graphene Nanoplatelets reinforced alu-minium composites are prepared using powder metallurgy and a hot extrusion process, with the GNPs content ranging from zero to 2 wt. percentage in increments of 0.5 wt%. In this work, the thermal con-ductivity of aluminium composites with 0.5 wt%, 1 wt%, 1.5% and 2 wt% GNPs are predicted using finite element analysis, experimental and theoretical models. The unit cell approach method is used to find the thermal conductivity of GNPs dispersed aluminium composites numerically. The thermal conductivity of GNPs dispersed aluminium composites are predicted with different models. The thermal conductivity of the GNPs dispersed aluminium composites increases with increasing the wt% of GNPs. After comparisons with the theoretical model and experimental results for thermal conductivity of GNPs dispersed aluminium composites, it can be seen that our finite element analysis result can reach a good agreement with experimental values. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method [J].
Bakshi, Srinivasa R. ;
Patel, Riken R. ;
Agarwal, Arvind .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) :419-428
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[3]   Effect of physio-chemically functionalized graphene nanoplatelet reinforcement on tensile properties of aluminum nanocomposite synthesized via spark plasma sintering [J].
Bhadauria, Alok ;
Singh, Lavish K. ;
Laha, Tapas .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 748 :783-793
[4]   Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites [J].
Boden, Andre ;
Boerner, Benji ;
Kusch, Patryk ;
Firkowska, Izabela ;
Reich, Stephanie .
NANO LETTERS, 2014, 14 (06) :3640-3644
[5]  
Frey S., 2014, Z ELECTRO CHEM, V38, P260
[6]   First-principles study of metal-graphene interfaces [J].
Gong, Cheng ;
Lee, Geunsik ;
Shan, Bin ;
Vogel, Eric M. ;
Wallace, Robert M. ;
Cho, Kyeongjae .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[7]   Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites [J].
Han, Xiaopeng ;
Huang, Ying ;
Zhou, Suhua ;
Sun, Xu ;
Peng, Xuanyi ;
Chen, Xuefang .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (05) :4179-4189
[8]   High Temperature Wear Behaviour of Nano/Micro B4C Reinforced Aluminium Matrix Composites Fabricated by an Ultrasonic Cavitation-Assisted Solidification Process [J].
Harichandran, R. ;
Selvakumar, N. ;
Venkatachalam, G. .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2017, 70 (01) :17-29
[9]   Orientation dependence of thermal conductivity in copper-graphene composites [J].
Jagannadham, K. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
[10]   A critique on "A cell model of effective thermal conductivity for saturated porous media" [J].
Janssen, Hans .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176 (176)