On the well-posedness of strong solution to ideal magnetohydrodynamic equations

被引:3
|
作者
Liu, Mingshuo [1 ]
Yuan, Rong [1 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
关键词
Ideal magnetohydrodynamic equations; incompressible flow; strong solution; well-posedness; Galerkin method; 35Q35; 76B03; 76E25; UPWIND SCHEME; BOUNDARY; FLOW;
D O I
10.1080/00207160.2017.1283413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the N-dimensional incompressible flow governed by the ideal magnetohydrodynamic (MHD) equations combining Euler equation (for the fluid velocity) and Maxwell's equation (for the magnetic field). In a bounded domain with the smooth boundary, as the initial data , the existence of the strong solution to the ideal MHD equations is obtained by Galerkin method. Moreover, based on specially dealing with the priori estimates to those nonlinear terms in the MHD equations, we prove that the strong solution to the equations is unique and depends continuously on the initial data in the spaces and (Hm-1 (Omega))(N).
引用
收藏
页码:2458 / 2465
页数:8
相关论文
共 50 条
  • [1] The well-posedness and exact solution of fractional magnetohydrodynamic equations
    Mingshuo Liu
    Yong Fang
    Huanhe Dong
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [2] The well-posedness and exact solution of fractional magnetohydrodynamic equations
    Liu, Mingshuo
    Fang, Yong
    Dong, Huanhe
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [3] LOCAL WELL-POSEDNESS FOR THE IDEAL INCOMPRESSIBLE DENSITY DEPENDENT MAGNETOHYDRODYNAMIC EQUATIONS
    Zhou, Yong
    Fan, Jishan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (03) : 813 - 818
  • [4] Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows
    Yang, Yong-Fu
    Gu, Xiaohua
    Dou, Changsheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 23 - 37
  • [5] Global well-posedness of the generalized magnetohydrodynamic equations
    Ye, Zhuan
    Zhao, Xiaopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [6] Global well-posedness of the generalized magnetohydrodynamic equations
    Zhuan Ye
    Xiaopeng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [7] Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension
    Trakhinin, Yuri
    Wang, Tao
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 761 - 808
  • [8] Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension
    Yuri Trakhinin
    Tao Wang
    Mathematische Annalen, 2022, 383 : 761 - 808
  • [9] Global well-posedness and existence of uniform attractor for magnetohydrodynamic equations
    Ai, Chengfei
    Tan, Zhong
    Zhou, Jianfeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7045 - 7069
  • [10] On the Well-posedness of the Ideal MHD Equations in the Triebel–Lizorkin Spaces
    Qionglei Chen
    Changxing Miao
    Zhifei Zhang
    Archive for Rational Mechanics and Analysis, 2010, 195 : 561 - 578