Wetting and Dewetting Transitions on Hierarchical Superhydrophobic Surfaces

被引:158
作者
Boreyko, Jonathan B. [1 ]
Baker, Christopher H. [1 ]
Poley, Celeste R. [1 ]
Chen, Chuan-Hua [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
ULTRAHYDROPHOBIC SURFACES; WATER-REPELLENT; ROUGHNESS; CONDENSATION; DROPS;
D O I
10.1021/la201587u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Many natural superhydrophobic structures have hierarchical two-tier roughness which is empirically known to promote robust superhydrophobicity. We report the wetting and dewetting properties of two-tier roughness as a function of the wettability of the working fluid, where the surface tension of water/ethanol drops is tuned by the mixing ratio, and compare the results to one-tier roughness. When the ethanol concentration of deposited drops is gradually increased on one-tier control samples, the impalement of the microtier-only surface occurs at a lower ethanol concentration compared to the nanotier-only surface. The corresponding two-tier surface exhibits a two-stage wetting transition, first for the impalement of the microscale texture and then for the nanoscale one. The impaled drops are subsequently subjected to vibration-induced dewetting. Drops impaling one-tier surfaces could not be dewetted; neither could drops impaling both tiers of the two-tier roughness. However, on the two-tier surface, drops impaling only the microscale roughness exhibited a full dewetting transition upon vibration. Our work suggests that two-tier roughness is essential for preventing catastrophic, hydrophobic surfaces.
引用
收藏
页码:7502 / 7509
页数:8
相关论文
共 41 条
[1]   Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal [J].
Bhushan, Bharat ;
Her, Eun Kyu .
LANGMUIR, 2010, 26 (11) :8207-8217
[2]   Pearl drops [J].
Bico, J ;
Marzolin, C ;
Quéré, D .
EUROPHYSICS LETTERS, 1999, 47 (02) :220-226
[3]   Rough wetting [J].
Bico, J ;
Tordeux, C ;
Quéré, D .
EUROPHYSICS LETTERS, 2001, 55 (02) :214-220
[4]   Self-propelled jumping drops on superhydrophobic surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICS OF FLUIDS, 2010, 22 (09)
[5]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[6]   Restoring Superhydrophobicity of Lotus Leaves with Vibration-Induced Dewetting [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (17)
[7]   Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface [J].
Bormashenko, Edward ;
Pogreb, Roman ;
Whyman, Gene ;
Erlich, Mordehai .
LANGMUIR, 2007, 23 (24) :12217-12221
[8]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[9]   Nanoscale Patterning of Microtextured Surfaces to Control Superhydrophobic Robustness [J].
Cha, Tae-Gon ;
Yi, Jin Woo ;
Moon, Myoung-Woon ;
Lee, Kwang-Ryeol ;
Kim, Ho-Young .
LANGMUIR, 2010, 26 (11) :8319-8326
[10]   Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J].
Chen, Chuan-Hua ;
Cai, Qingjun ;
Tsai, Chialun ;
Chen, Chung-Lung ;
Xiong, Guangyong ;
Yu, Ying ;
Ren, Zhifeng .
APPLIED PHYSICS LETTERS, 2007, 90 (17)