A note on the regularized proximal point algorithm

被引:15
作者
Wang, Fenghui [1 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471022, Peoples R China
关键词
Maximal monotone operator; Proximal point algorithm; Firmly nonexpansive operator; STRONG-CONVERGENCE; OPERATORS;
D O I
10.1007/s10898-010-9611-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently, Xu (J Glob Optim 36:115-125 (2006)) introduced a regularized proximal point algorithm for approximating a zero of a maximal monotone operator. In this note, we shall prove the strong convergence of this algorithm under some weaker conditions.
引用
收藏
页码:531 / 535
页数:5
相关论文
共 10 条
[1]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[2]  
GOEBEL K, 1990, TOPICS METRIC FIXED
[3]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[4]  
Lehdili N., 1996, Optimization, V37, P239, DOI 10.1080/02331939608844217
[5]   MONOTONE OPERATORS AND PROXIMAL POINT ALGORITHM [J].
ROCKAFELLAR, RT .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :877-898
[6]   Forcing strong convergence of proximal point iterations in a Hilbert space [J].
Solodov, MV ;
Svaiter, BF .
MATHEMATICAL PROGRAMMING, 2000, 87 (01) :189-202
[7]   A note on a paper "A regularization method for the proximal point algorithm" [J].
Song, Yisheng ;
Yang, Changsen .
JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (01) :171-174
[8]  
Suzuki T, 2007, P AM MATH SOC, V135, P99
[9]   Iterative algorithms for nonlinear operators [J].
Xu, HK .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :240-256
[10]   A regularization method for the proximal point algorithm [J].
Xu, Hong-Kun .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (01) :115-125