Determination of fatty acid profile in cow's milk using mid-infrared spectrometry: Interest of applying a variable selection by genetic algorithms before a PLS regression
被引:45
作者:
Ferrand, M.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Elevage, F-75595 Paris 12, FranceInst Elevage, F-75595 Paris 12, France
Ferrand, M.
[1
]
Huquet, B.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Elevage, F-75595 Paris 12, FranceInst Elevage, F-75595 Paris 12, France
Huquet, B.
[1
]
Barbey, S.
论文数: 0引用数: 0
h-index: 0
机构:
UE INRA Pin Au Haras, F-61310 Le Pin Au Haras, FranceInst Elevage, F-75595 Paris 12, France
Barbey, S.
[2
]
Barillet, F.
论文数: 0引用数: 0
h-index: 0
机构:
INRA SAGA, F-31326 Castanet Tolosan, FranceInst Elevage, F-75595 Paris 12, France
Barillet, F.
[3
]
Faucon, F.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Elevage, F-75595 Paris 12, France
CNIEL, F-75314 Paris 09, FranceInst Elevage, F-75595 Paris 12, France
Faucon, F.
[1
,4
]
Larroque, H.
论文数: 0引用数: 0
h-index: 0
机构:
INRA SAGA, F-31326 Castanet Tolosan, FranceInst Elevage, F-75595 Paris 12, France
Larroque, H.
[3
]
Leray, O.
论文数: 0引用数: 0
h-index: 0
机构:
ACTILAIT 39, F-39802 Poligny, FranceInst Elevage, F-75595 Paris 12, France
Leray, O.
[5
]
Trommenschlager, J. M.
论文数: 0引用数: 0
h-index: 0
机构:
UR ASTER INRA Mirecourt, F-88500 Mirecourt, FranceInst Elevage, F-75595 Paris 12, France
Trommenschlager, J. M.
[6
]
Brochard, M.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Elevage, F-75595 Paris 12, FranceInst Elevage, F-75595 Paris 12, France
Brochard, M.
[1
]
机构:
[1] Inst Elevage, F-75595 Paris 12, France
[2] UE INRA Pin Au Haras, F-61310 Le Pin Au Haras, France
[3] INRA SAGA, F-31326 Castanet Tolosan, France
[4] CNIEL, F-75314 Paris 09, France
[5] ACTILAIT 39, F-39802 Poligny, France
[6] UR ASTER INRA Mirecourt, F-88500 Mirecourt, France
The new challenges of the dairy industry require an accurate estimation of fine milk composition. The mid-infrared (MIR) spectrometry method appears to be a good, fast and cheap method for assessing milk fatty acid profile. Although partial least squares (PLS) regression is a very useful and powerful method to determine fine milk composition from the spectra, the estimations are not always very accurate and stable over time. Therefore a genetic algorithm (GA) combined with a PLS regression was used to produce models with a reduced number of wavelengths and a better accuracy. The results are a little sensitive to the choice of parameters in the algorithm. The number of wavelengths to consider is reduced substantially by 4 and accuracy is increased on average by 15%. (C) 2010 Elsevier B.V. All rights reserved.