Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model

被引:93
|
作者
Niu, Dongxiao [1 ,2 ]
Sun, Lijie [1 ,2 ,4 ]
Yu, Min [1 ,2 ]
Wang, Keke [3 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Beijing Key Lab New Energy & Low Carbon Dev, Beijing 102206, Peoples R China
[3] Zhengzhou Univ, Sch Management Engn, Zhengzhou 450001, Peoples R China
[4] North China Elect Power Univ, Sch Econ & Management, 2 Beinong Rd, Beijing 102206, Peoples R China
关键词
Wind power forecasting; Data-driven modeling; Bidirectional long short-term memory; Attention mechanism; Interval forecasting; NEURAL-NETWORK; SPEED PREDICTION; ALGORITHM; STRATEGY;
D O I
10.1016/j.energy.2022.124384
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate and reliable wind power forecasting (WPF) is significant for ensuring power systems' economic operation and safe dispatching and for reducing the technical and economic risks faced by power market participants. Based on data-driven and deep-learning methods, we propose a hybrid ultra-short-term WPF framework that can achieve accurate point and interval WPF. First, the multi-sourced and multi-dimensional data sets of wind power plant are preprocessed. Second, feature selection (FS) is con-ducted to eliminate redundant features. Third, the wind power sequence is decomposed through the variational modal decomposition improved by grey wolf optimization (GWO-VMD). Then, the BiLSTM-Attention model is established to predict each subsequence of wind power. Finally, the prediction in-tervals of wind power under different confidence levels are estimated by kernel density estimation with the Gaussian kernel function (KDE-Gaussian). The proposed FS-GWO-VMD-BiLSTM-Attention forecasting framework is compared with benchmark models to verify its practicability and reliability. Compared with the BPNN, the mean absolute error, mean absolute percentage error, and mean square error of the FS-GWO-VMD-BiLSTM-Attention model are reduced by 94.03%, 85.82%, and 99.51%, respectively. Further-more, according to the coverage width-based criterion, KDE-Gaussian is superior to other interval forecasting methods, which can achieve more reliable forecasting of prediction interval.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Data-driven and Deep-learning-based Ultra-short-term Wind Power Prediction
    Miao C.
    Li H.
    Wang X.
    Han L.
    Ma Y.
    Li H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (14): : 22 - 29
  • [2] An Ultra-Short-Term Wind Power Forecasting Method Based on Data-Physical Hybrid-Driven Model
    Wang Da
    Shi Yv
    Deng Weiying
    Guan Xiaozhuo
    Yang Mao
    Yu Xinnan
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 2326 - 2334
  • [3] A Two-Stage Method for Ultra-Short-Term PV Power Forecasting Based on Data-Driven
    Zhou, Hangxia
    Wang, Jun
    Ouyang, Fulian
    Cui, Chen
    Li, Xianbin
    IEEE ACCESS, 2023, 11 : 41175 - 41189
  • [4] Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty
    Liu, Lei
    Liu, Jicheng
    Ye, Yu
    Liu, Hui
    Chen, Kun
    Li, Dong
    Dong, Xue
    Sun, Mingzhai
    RENEWABLE ENERGY, 2023, 205 : 598 - 607
  • [5] Ultra-short-term photovoltaic power forecasting of multifeature based on hybrid deep learning
    Huang, Yanguo
    Zhou, Manguo
    Yang, Xungen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1370 - 1386
  • [6] Ultra-short-term wind power forecasting based on TCN-Wpsformer hybrid model
    Xu, Tan
    Xie, Kaigui
    Wang, Yu
    Hu, Bo
    Shao, Changzheng
    Zhao, Yusheng
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (08): : 54 - 61
  • [7] Ultra-Short-Term Wind Power Forecasting Based on Deep Belief Network
    Wang, Sen
    Sun, Yonghui
    Zhai, Suwei
    Hou, Dongchen
    Wang, Peng
    Wu, Xiaopeng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7479 - 7483
  • [8] A Novel Hybrid Deep Learning Model for Forecasting Ultra-Short-Term Time Series Wind Speeds for Wind Turbines
    Yang, Jianzan
    Pang, Feng
    Xiang, Huawei
    Li, Dacheng
    Gu, Bo
    PROCESSES, 2023, 11 (11)
  • [9] A Deep Learning-Based Dual-Scale Hybrid Model for Ultra-Short-Term Photovoltaic Power Forecasting
    Zhang, Yongning
    Ren, Xiaoying
    Zhang, Fei
    Liu, Yulei
    Li, Jierui
    SUSTAINABILITY, 2024, 16 (17)
  • [10] Interval prediction of ultra-short-term photovoltaic power based on a hybrid model
    Zhang, Jinliang
    Liu, Ziyi
    Chen, Tao
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 216