Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches

被引:159
作者
Kjaergaard, Henrik G. [1 ,2 ]
Garden, Anna L. [1 ,2 ]
Chaban, Galina M. [3 ]
Gerber, R. Benny [4 ,5 ,6 ]
Matthews, Devin A. [7 ,8 ]
Stanton, John F. [7 ,8 ]
机构
[1] Univ Otago, Dept Chem, Dunedin 9054, New Zealand
[2] Aarhus Univ, Dept Chem, Ctr Theoret Chem, Lundbeck Fdn, DK-8000 Aarhus, Denmark
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[5] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[6] Hebrew Univ Jerusalem, Fritz Haber Res Ctr, IL-91904 Jerusalem, Israel
[7] Univ Texas Austin, Ctr Theoret Chem, Dept Chem, Austin, TX 78712 USA
[8] Univ Texas Austin, Ctr Theoret Chem, Dept Biochem, Austin, TX 78712 USA
关键词
D O I
10.1021/jp710066f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have calculated frequencies and intensities of fundamental and overtone vibrational transitions in water and water dimer with use of different vibrational methods. We have compared results obtained with correlation-corrected vibrational self-consistent-field theory and vibrational second-order perturbation theory both using normal modes and finally with a harmonically coupled anharmonic oscillator local mode model including CH-stretching and HOH-bending local modes. The coupled cluster with singles, doubles, and perturbative triples ab initio method with augmented correlation-consistent triple-zeta Dunning and atomic natural orbital basis sets has been used to obtain the necessary potential energy and dipole moment surfaces. We identify the strengths and weaknesses of these different vibrational approaches and compare our results to the available experimental results.
引用
收藏
页码:4324 / 4335
页数:12
相关论文
共 89 条
[21]   STRUCTURE OF WATER DIMER FROM MOLECULAR-BEAM ELECTRIC RESONANCE SPECTROSCOPY [J].
DYKE, TR ;
MACK, KM ;
MUENTER, JS .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (02) :498-510
[22]   ELECTRIC DIPOLE-MOMENTS OF LOW J STATES OF H2O AND D2O [J].
DYKE, TR ;
MUENTER, JS .
JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (06) :3125-3127
[23]   A comparison of experimental and calculated spectra of HNO3 in the near-infrared using Fourier transform infrared spectroscopy and vibrational perturbation theory [J].
Feierabend, KJ ;
Havey, DK ;
Varner, ME ;
Stanton, JF ;
Vaida, V .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (12)
[24]   IR-SPECTRUM OF WATER DIMER IN SOLID NITROGEN .1. ASSIGNMENT AND FORCE-CONSTANT CALCULATIONS [J].
FREDIN, L ;
NELANDER, B ;
RIBBEGARD, G .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (09) :4065-4072
[25]  
Frisch M.J., 2004, Gaussian 03
[26]  
Revision C.02
[27]  
GARDEN AL, UNPUB J PHYS CHEM A
[28]   Analytic CCSD(T) second derivatives [J].
Gauss, J ;
Stanton, JF .
CHEMICAL PHYSICS LETTERS, 1997, 276 (1-2) :70-77
[29]  
Gerber RB, 2005, THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY: THE FIRST FORTY YEARS, P165, DOI 10.1016/B978-044451719-7/50052-4
[30]   Vibrational spectroscopy and the development of new force fields for biological molecules [J].
Gerber, RB ;
Chaban, GM ;
Gregurick, SK ;
Brauer, B .
BIOPOLYMERS, 2003, 68 (03) :370-382