Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches

被引:159
作者
Kjaergaard, Henrik G. [1 ,2 ]
Garden, Anna L. [1 ,2 ]
Chaban, Galina M. [3 ]
Gerber, R. Benny [4 ,5 ,6 ]
Matthews, Devin A. [7 ,8 ]
Stanton, John F. [7 ,8 ]
机构
[1] Univ Otago, Dept Chem, Dunedin 9054, New Zealand
[2] Aarhus Univ, Dept Chem, Ctr Theoret Chem, Lundbeck Fdn, DK-8000 Aarhus, Denmark
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[5] Hebrew Univ Jerusalem, Dept Phys Chem, IL-91904 Jerusalem, Israel
[6] Hebrew Univ Jerusalem, Fritz Haber Res Ctr, IL-91904 Jerusalem, Israel
[7] Univ Texas Austin, Ctr Theoret Chem, Dept Chem, Austin, TX 78712 USA
[8] Univ Texas Austin, Ctr Theoret Chem, Dept Biochem, Austin, TX 78712 USA
关键词
D O I
10.1021/jp710066f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have calculated frequencies and intensities of fundamental and overtone vibrational transitions in water and water dimer with use of different vibrational methods. We have compared results obtained with correlation-corrected vibrational self-consistent-field theory and vibrational second-order perturbation theory both using normal modes and finally with a harmonically coupled anharmonic oscillator local mode model including CH-stretching and HOH-bending local modes. The coupled cluster with singles, doubles, and perturbative triples ab initio method with augmented correlation-consistent triple-zeta Dunning and atomic natural orbital basis sets has been used to obtain the necessary potential energy and dipole moment surfaces. We identify the strengths and weaknesses of these different vibrational approaches and compare our results to the available experimental results.
引用
收藏
页码:4324 / 4335
页数:12
相关论文
共 89 条
[1]   GENERAL CONTRACTION OF GAUSSIAN-BASIS SETS .1. ATOMIC NATURAL ORBITALS FOR 1ST-ROW AND 2ND-ROW ATOMS [J].
ALMLOF, J ;
TAYLOR, PR .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (07) :4070-4077
[2]   Radical-water complexes in Earth's atmosphere [J].
Aloisio, S ;
Francisco, JS .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (12) :825-830
[3]   NONITERATIVE 5TH-ORDER TRIPLE AND QUADRUPLE EXCITATION-ENERGY CORRECTIONS IN CORRELATED METHODS [J].
BARTLETT, RJ ;
WATTS, JD ;
KUCHARSKI, SA ;
NOGA, J .
CHEMICAL PHYSICS LETTERS, 1990, 165 (06) :513-522
[4]   The vibrational spectrum of (H2O)2:: comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm-1 [J].
Bouteiller, Y ;
Perchard, JP .
CHEMICAL PHYSICS, 2004, 305 (1-3) :1-12
[5]   THE SELF-CONSISTENT-FIELD APPROACH TO POLYATOMIC VIBRATIONS [J].
BOWMAN, JM .
ACCOUNTS OF CHEMICAL RESEARCH, 1986, 19 (07) :202-208
[6]  
Braly LB, 2000, J CHEM PHYS, V112, P10314, DOI 10.1063/1.481669
[7]   Infrared spectroscopy of size-selected water and methanol clusters [J].
Buck, U ;
Huisken, F .
CHEMICAL REVIEWS, 2000, 100 (11) :3863-3890
[8]   Predictions of the properties of water from first principles [J].
Bukowski, Robert ;
Szalewicz, Krzysztof ;
Groenenboom, Gerrit C. ;
van der Avoird, Ad .
SCIENCE, 2007, 315 (5816) :1249-1252
[9]   Development of transferable interaction models for water.: IV.: A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface [J].
Burnham, CJ ;
Xantheas, SS .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (12) :5115-5124
[10]   Anharmonic vibrational spectroscopy of hydrogen-bonded systems directly computed from ab initio potential surfaces:: (H2O)n, n=2, 3;: Cl-(H2O)n, n=1, 2;: H+(H2O)n, n=1, 2; H2O-CH3OH [J].
Chaban, GM ;
Jung, JO ;
Gerber, RB .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (12) :2772-2779