A comparison of machine learning algorithms for the surveillance of autism spectrum disorder
被引:7
|
作者:
Lee, Scott H.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Dis Control & Prevent, Atlanta, GA 30333 USACtr Dis Control & Prevent, Atlanta, GA 30333 USA
Lee, Scott H.
[1
]
Maenner, Matthew J.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Dis Control & Prevent, Atlanta, GA 30333 USACtr Dis Control & Prevent, Atlanta, GA 30333 USA
Maenner, Matthew J.
[1
]
Heilig, Charles M.
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Dis Control & Prevent, Atlanta, GA 30333 USACtr Dis Control & Prevent, Atlanta, GA 30333 USA
Heilig, Charles M.
[1
]
机构:
[1] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA
来源:
PLOS ONE
|
2019年
/
14卷
/
09期
关键词:
UNITED-STATES;
CHILDREN;
D O I:
10.1371/journal.pone.0222907
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Objective The Centers for Disease Control and Prevention (CDC) coordinates a labor-intensive process to measure the prevalence of autism spectrum disorder (ASD) among children in the United States. Random forests methods have shown promise in speeding up this process, but they lag behind human classification accuracy by about 5%. We explore whether more recently available document classification algorithms can close this gap. Materials and methods Using data gathered from a single surveillance site, we applied 8 supervised learning algorithms to predict whether children meet the case definition for ASD based solely on the words in their evaluations. We compared the algorithms' performance across 10 random train-test splits of the data, using classification accuracy, F1 score, and number of positive calls to evaluate their potential use for surveillance. Results Across the 10 train-test cycles, the random forest and support vector machine with Naive Bayes features (NB-SVM) each achieved slightly more than 87% mean accuracy. The NB-SVM produced significantly more false negatives than false positives (P = 0.027), but the random forest did not, making its prevalence estimates very close to the true prevalence in the data. The best-performing neural network performed similarly to the random forest on both measures. Discussion The random forest performed as well as more recently available models like the NB-SVM and the neural network, and it also produced good prevalence estimates. NB-SVM may not be a good candidate for use in a fully-automated surveillance workflow due to increased false negatives. More sophisticated algorithms, like hierarchical convolutional neural networks, may not be feasible to train due to characteristics of the data. Current algorithms might perform better if the data are abstracted and processed differently and if they take into account information about the children in addition to their evaluations. Conclusion Deep learning models performed similarly to traditional machine learning methods at predicting the clinician-assigned case status for CDC's autism surveillance system. While deep learning methods had limited benefit in this task, they may have applications in other surveillance systems.
机构:
Tel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
Voinsky, Irena
Fridland, Oleg Y.
论文数: 0引用数: 0
h-index: 0
机构:Tel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
Fridland, Oleg Y.
Aran, Adi
论文数: 0引用数: 0
h-index: 0
机构:
Shaare Zedek Med Ctr, IL-91031 Jerusalem, Israel
Hebrew Univ Jerusalem, Inst Drug Res, Fac Med, Sch Pharm,Obes & Metab Lab, IL-91240 Jerusalem, IsraelTel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
Aran, Adi
Frye, Richard E.
论文数: 0引用数: 0
h-index: 0
机构:
Autism Discovery & Treatment Fdn, Phoenix, AZ 85050 USA
Rossignol Med Ctr, Phoenix, AZ 85050 USATel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
Frye, Richard E.
Gurwitz, David
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, Sagol Sch Neurosci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Peralta-Marzal, Lucia N.
Rojas-Velazquez, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Dept Data Sci, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Rojas-Velazquez, David
Rigters, Douwe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Rigters, Douwe
Prince, Naika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Prince, Naika
Garssen, Johan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Danone Nutr Res, Global Ctr Excellence Immunol, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Garssen, Johan
Kraneveld, Aletta D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Vrije Univ Amsterdam, Fac Sci, Dept Neurosci, Amsterdam, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Kraneveld, Aletta D.
Perez-Pardo, Paula
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Perez-Pardo, Paula
Lopez-Rincon, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Dept Data Sci, Utrecht, NetherlandsUniv Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
机构:
Ewha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South KoreaEwha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South Korea
Moon, Sun Jae
Hwang, Jinseub
论文数: 0引用数: 0
h-index: 0
机构:
Daegu Univ, Dept Comp Sci & Stat, Gyeongsangbuk Do, South KoreaEwha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South Korea
Hwang, Jinseub
Kana, Rajesh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alabama, Dept Psychol, Box 870348, Tuscaloosa, AL 35487 USAEwha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South Korea
Kana, Rajesh
Torous, John
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Psychiat, Boston, MA 02115 USAEwha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South Korea
Torous, John
Kim, Jung Won
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alabama Birmingham, Dept Psychiat & Behav Neurobiol, Birmingham, AL 35294 USAEwha Womans Univ, Mokdong Hosp, Med Ctr, 1071 Anyangcheon Ro, Seoul 07985, South Korea
机构:
Univ Penn, Dept Radiol, Philadelphia, PA 19104 USAUniv Penn, Dept Radiol, Philadelphia, PA 19104 USA
Zhou, Yongxia
Yu, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, South Texas Vet Hlth Care Syst, Dept Vet Affairs,Dept Ophthalmol, San Antonio, TX 78229 USAUniv Penn, Dept Radiol, Philadelphia, PA 19104 USA
Yu, Fang
Duong, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, South Texas Vet Hlth Care Syst, Dept Vet Affairs,Dept Ophthalmol, San Antonio, TX 78229 USAUniv Penn, Dept Radiol, Philadelphia, PA 19104 USA